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Summary

We are often interested in estimating sensitivity and specificity of a group of raters or a
set of new diagnostic tests in situations in which gold standard evaluation is expensive or
invasive. Numerous authors have proposed latent modeling approaches for estimating diag-
nostic error without a gold standard. Albert and Dodd (2004) showed that, when modeling
without a gold standard, estimates of diagnostic error can be biased when the dependence
structure between tests is misspecified. In addition, they showed that choosing between
different models for this dependence structure is difficult in most practical situations. While
these results caution against using these latent class models, the difficulties of obtaining gold
standard verification remain a practical reality. We extend two classes of models to provide a
compromise that collects gold standard information on a subset of subjects but incorporates
information from both the verified and non-verified subjects during estimation. We examine
the robustness of diagnostic error estimation with this approach and show that choosing be-
tween competing models is easier in this context. In our analytic work and simulations, we
consider situations in which verification is completely at random as well as settings in which
the probability of verification depends on the actual test results. We apply our method-
ological work to a study designed to estimate the diagnostic error of digital radiography for
gastric cancer.

1 Introduction

Diagnostic and screening tests are important tools of modern clinical decision making. These

tests help to diagnose illness to initiate treatment (e.g., a throat culture for streptococcal

infection) or to identify individuals requiring more extensive follow-up (e.g., mammography

screening for breast cancer). Estimation of sensitivity and specificity, measures of diagnostic

accuracy, requires knowledge of the true disease state, which is assessed by a gold or reference
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standard. (Throughout, we use both “gold standard” and “reference standard” to mean

the accepted standard for diagnosis). Gold standard evaluation may be expensive, time-

consuming or unethical to perform on all subjects, and is commonly difficult to obtain

in clinical studies. Latent-class models offer a tempting alternative because assessment of

the true status is not necessary. However, it has been shown that latent class models for

estimating diagnostic error and prevalence may be problematic in many practical situations

(Albert and Dodd, 2004). Specifically, they showed that, with a small number of tests,

estimates of diagnostic error were biased under a misspecified dependence structure, yet

in many practical situations it was nearly impossible to distinguish between models based

on the observed data. The lack of robustness of these models is concerning; however, the

limitations of obtaining gold standard is a practical reality and reasonable alternatives are

desirable.

Although it may be very difficult to obtain the gold standard on all subjects, in many

cases, it may be feasible to obtain gold standard information on a fraction of subjects (a.k.a,

partial gold standard evaluation). In radiological studies, for example, gold standard eval-

uation usually requires multiple radiologists simultaneously examining images and clinical

information. This may be an infeasible proposition for many studies to collect the gold stan-

dard on all subjects. However, it may be very feasible to obtain gold standard information on

a fraction of study subjects. Thus, methodological approaches which incorporating partial

gold standard information may be an attractive alternative to latent class modeling.

Our application is a medical imaging study to compare conventional versus digital radi-

ography for diagnosing gastric cancer (Iinuma, et al., 2000). In this study, six radiologists

evaluated 225 images on either conventional (n=112) or digital (n=113) radiography, to

compare the sensitivity and specificity across techniques and radiologists. A gold standard

evaluation was obtained from three independent radiologists simultaneously reviewing clin-

ical information along with all imaging data to provide a reference truth evaluation of the

image. Specifically, these radiologists reviewed clinical information such as patient charac-

teristics, chief symptoms, purposes of the examination, endoscopic features, and histologic
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findings in biopsy specimens. This time-consuming consensus review was done on all 225

images, although it may not be feasible in larger studies or in other studies with more lim-

ited resources. Rater-specific as well as over-all sensitivity and specificity were estimated by

treating the consensus review by the three independent radiologists as gold standard truth.

Our methodological development will focus on the data from this study.

Although our primary example is in radiology, the problem occurs more generally in

medicine. For example, similar problems exist for the evaluation of biomarkers in which one

wishes to compare the diagnostic accuracy of a series of tests, where a gold standard exists,

but is very expensive. See, for example Van Dyck, et al. (2004), in which a set of tests

for herpes simplex virus type 2 (HSV-2) were compared, but only a subset of samples were

verified with the reference standard Western blot.

In this paper, we extend two classes of models, originally proposed for modeling diagnostic

error on multiple tests without a gold standard (Albert and Dodd, 2004), to the situation of

estimating diagnostic error for a partially verified design. We examine the robustness of these

models to the assumed dependence structure between tests. In particular, we examine bias

and model selection using asymptotic results and simulation studies. We examine whether

observing gold standard information on a small percentage of cases improves the lack of

robustness to assumptions on the dependence between tests found when modeling without

a gold standard. In section 2, we describe our approach, which considers various models

for the dependence between tests. In Section 3, we fit the various classes of models to the

gastric cancer dataset and show that the results are quite different when we use the reference

standard evaluation or when we model without a gold standard. In Section 4, we investigate

the asymptotic bias from misspecifying the dependence structure under full as well as partial

reference sample evaluation. Simulations examining the finite sample properties of partial

reference sample verification are described in Section 5. We illustrate the effect of partial

reference sample verification using the gastric cancer dataset in Section 6. A discussion

follows in Section 7 in which we make general recommendations.
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2 Models

Let Y i = (Y1i, Yi2, ..., YiJ)′ be dichotomous test results for individual i (i = 1, 2, 3, ..., I),

with Yij denoting the result from the jth of J tests. We denote di as the true unobserved

disease status for patient i and vi as an indicator of whether the ith patient is verified by a

reference standard (vi = 1 if verified and vi = 0, otherwise). When a patient is verified, the

contribution to the likelihood is Li = P (Y i)P (di)P (vi = 1|Y i). Similarly, when a patient is

not verified, the contribution is Li = P (vi|Y i)
1∑

l=0

P (Y i|di = 1)P (di = 1). In a general form,

when the verification mechanism does not share parameters with the probability of disease

P (di) or the diagnostic accuracy P (Y i|di), then the contribution of the ith patient to the

likelihood (Li) is proportional to:

Li ∝ [P (Y i|di)P (di)]
vi [

1∑
l=0

P (Y i|di = l)P (di = l)]1−vi , (1)

where P (di = 1) is the disease prevalence which will be denoted by Pd.

There are three types of verification processes. First, consider verification that is com-

pletely at random, which occurs if the verification process is a simple random sample cho-

sen independently from the test results Y i. The proportion of individuals verified is de-

noted r, where r = P (vi = 1). Second, consider verification in which the probability

of verification depends on Y i, which we denote as rY i
= P (vi = 1|Y i). Of particular

interest is when the probability of verification depends on the number of positive tests,

rs = P (vi = 1|
J∑

j=1

yij), s = 1, 2, ..., J . This type of verification has been referred to as verifi-

cation biased sampling (Pepe, 2003). An important special case, called extreme verification

biased sampling occurs when the gold standard test is obtained only on test positive sub-

jects because it requires an invasive procedure such as surgery, which is unethical to perform

on all subjects if the experimental tests Y i are negative. Various authors have proposed

models for analyzing the results of two tests under extreme biased sampling (Walter, 1999;

Hoenig et al., 2002; Merwe and Manitz, 2002). The third type of verification occurs when

the probability of verification depends on the true disease status, which is only known for
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those patients verified, denoted rdi
= P (vi = 1|di). This so called, non-ignorable verification

has been discussed by various authors including Kosinski and Barnhart (2003) and Baker

(1995). We focus only on the first two types of verification processes.

We consider two different ways to specify P (Y i|di) that were originally developed for

estimating diagnostic error without a gold standard. The Gaussian random effects and

finite mixture models are very different formulations for describing conditional dependence

between tests which both have attractive features. The Gaussian random effects (GRE)

model (Qu et al., 1996 ) introduces dependence across tests by assuming that (Yij|di, bi) are

independent Bernoulli with proportion given by Φ(βjdi
+ σdi

bi), where the random variables

bi are standard normal and Φ is the cumulative distribution function of a standard normal

distribution. Under this model, P (Y i|di) =
∫ {∏J

j=1 P (Yij|di, b)}φ(b)db, where φ(b) is the

standard normal density. Under the GRE model, the sensitivity and specificity of the jth test

is given by Φ(βj1/
√

1 + σ2
1) and 1−Φ(βj0/

√
1 + σ2

0), respectively. A substantially different

model for incorporating dependence is the finite mixture (FM) model (Albert et al., 2001;

Albert and Dodd, 2004) in which some individuals who are truly positive are always classified

as positive by any test while others are subject to diagnostic error. Similarly, some truly

negative subjects are always classified as negative by any test while others are subject to

diagnostic error. Let lidi
be an indicator of whether the ith subject, given disease status di, is

always classified correctly, so that li1 = 1 when a true positive subject is always positive and

li0 = 1 when a truly negative is always rated negative. Further, define η0 = P (li0 = 1) and

η1 = P (li1 = 1). Test results Yij given di and lidi
are independent Bernoulli with probability

P (Yij = 1|di, lidi
) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if di = 1 and li1 = 1

0 if di = 0 and li0 = 1

ωj(1) if di = 1 and li1 = 0

1 − ωj(0) if di = 0 and li0 = 0,

(2)

where ωj(di) is the probability of the jth test making a correct diagnosis when the individual

is subject to diagnostic error (li1 = 0 or li0 = 0). Under the finite mixture model, the

sensitivity and specificity of the jth test are η1 + (1 − η1)ωj(1) and η0 + (1 − η0)ωj(0),

5



respectively. Under both the GRE and FM models, estimates of a common sensitivity and

specificity across J tests can be obtained by assuming β0l = β1l = ... = βJl = β1 and

ω1(l) = ω2(l) = ... = ωJ(l) = ω(l), for l = 0, 1.

Depending on the application, the FM or the GRE model may better describe the depen-

dence structure between tests. Both models need to be compared with a simple alternative

which is nested within both of these conditional dependence models. The conditional inde-

pendence (CI) model which assumes the tests are independent given the true disease status

provides such an alternative. The GRE model reduces to the CI model when σ0 = σ1 = 0,

while the FM model reduces to the CI model when η0 = η1 = 0.

For each of the models, estimation is based on maximizing L =
∏I

i=1 Li, where Li is

given by (1). Standard errors can be estimated with the Bootstrap (Efron and Tibshirani,

1993).

3 Analysis of Gastric Cancer Data

We estimate prevalence, sensitivity and specificity of digital radiography for gastric cancer

using the likelihood in (1) and the GRE, FM, and CI models, under both complete and no

verification. Table 1 shows the overall estimates of prevalence, sensitivity and specificity for

digital radiography with the consensus measurements as a gold standard and with no gold

standard. Estimates were obtained by assuming a common sensitivity and specificity across

the 6 raters, and were derived under the CI, as well as the GRE and FM models. Bootstrap

standard errors are also presented under each model. Interestingly, under complete verifi-

cation, overall estimates of prevalence, sensitivity and specificity as well as their bootstrap

standard errors were nearly identical across the three classes of models. In addition, these

estimates were identical to estimates obtained by Iinuma et al. (2000) using generalized

estimating equations (Liang and Zeger, 1986), a procedure known to be insensitive to as-

sumptions on the dependence structure between tests. These results suggest that estimates

of prevalence, sensitivity, and specificity are insensitive to the dependence structure between

tests under complete verification. When no gold standard information is incorporated, es-
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timates of prevalence and diagnostic error differ across models for the dependence between

tests. This is consistent with results by Albert and Dodd (2004) who showed that diagnostic

error estimation may be sensitive to assumptions on the dependence between tests when no

verification is performed.

By the likelihood principle, we compare models based on a comparison of the likelihood

values. Using the gold standard, the log-likelihoods were -314.63, -300.36, and -305.45, for

the CI, GRE, and FM models, respectively (there are 3, 5, and 5 parameters for each model,

respectively). We compared the GRE and FM models with the CI model using a likelihood

ratio test since the CI model is nested within both of these conditional dependence models.

Since the parameters which characterize the conditional dependence are on the boundary

(σ0 = σ1 = 0 for the GRE model and η0 = η1 = 0 for the FM model) under the null hypothesis

corresponding to a CI model, the standard likelihood ratio theory is inappropriate (Self and

Liang, 1997). We conducted a simulation study to obtain the reference distribution under the

null hypothesis by simulating 10,000 datasets under the estimated CI model and evaluating

the likelihood ratio test of σ0 = σ1 and η0 = η1 = 0 corresponding to the GRE model and FM

models. Based on the above observed log-likelihoods and the simulated reference distribution,

we reject the independence model in favor of the GRE and FM models (P < 0.001, for both

models). Further, parameter estimates characterizing the conditional dependence under both

conditional dependence models are sizable. For the GRE model, σ̂0 = 1.1 and σ̂1 = 0.37 and

for the FM model η̂0 = 0.31 and η̂1 = 0.38, respectively. A comparison of the two non-nested

GRE and FM models can be made by directly comparing the two log-likelihoods since both

models have the same number of parameters. Under complete gold standard evaluation, this

comparison clearly favors the GRE model.

For the no gold standard case, the log-likelihoods for the CI, GRE, and FM models were

-283.19, -280.16, and -280.30, respectively. Consistent with Albert and Dodd (2004), these

results suggest that, although it is easy to distinguish between conditional dependence and a

conditional independence model (likelihood ratio tests computed as described above for com-

plete verification showed evidence for conditional dependence; P-values for the comparisons
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of the GRE and FM models relative to the CI model were 0.009 and 0.016, respectively), it

may be difficult to choose between the two models for conditional dependence with no gold

standard.

Table 2 shows rater-specific estimates of sensitivity and specificity, along with prevalence

for models which incorporate the gold standard information and those that do not. As with

the overall estimates of sensitivity and specificity, individual rater estimates are nearly iden-

tical across models for the dependence between tests as well as to the rater-specific estimates

presented in Iinuma et al. (2000). In contrast, estimates obtained using no gold standard

information were highly model dependent and were very different from those estimates which

used the gold standard information.

Thus, modeling approaches with complete verification appear to be more robust against

misspecification of the dependence structure between tests, while approaches with no ver-

ification appear to lack robustness. A natural question is how the statistical properties of

the estimation improve with an increasing proportion of gold standard evaluation. This will

be the primary focus of this paper. We discuss asymptotic and simulation results before re-

turning to this example and varying the amount of verification. We focus on comparing the

GRE and FM models since it has been shown in Albert and Dodd (2004) that it is difficult

to distinguish between these rather different models with no gold standard evaluation.

4 Asymptotic Results

We examined the asymptotic bias when the dependence structure is misspecified as a function

of the proportion of samples receiving gold standard evaluation. For simplicity, we examine

this bias for the case when interest focuses on estimating a common sensitivity and specificity

across raters (denoted as SENS and SPEC, respectively). We examined both verification

that is completely at random and verification biased sampling. The misspecified maximum-

likelihood estimator for the model parameters, denoted by θ̂∗, converges to the value θ∗,

where
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θ∗ = arg maxθET [logL(Y i, θ)], (3)

and logL(Y i, θ) is the individual contribution to the log-likelihood under the assumed model

and the expectation is taken under the true model T . The notation

ET (logLM) = ET [logL(Y i, θ)]
∣∣∣
θ=θ∗

(4)

denotes the expectation (taken under the true model T ) of an individual’s contribution

to the log-likelihood under the assumed model M when evaluated at θ∗. Sensitivity and

specificity are model dependent functional forms of the model parameters, SENS∗ = g1(θ
∗)

and SPEC∗ = g2(θ
∗), where g1 and g2 relate model parameters to sensitivity and specificity.

Estimators of sensitivity and specificity converge to SENS∗ and SPEC∗ under misspecified

models. Expressions for an individual’s contribution to the expected log-likelihood under the

correct and misspecified models are provided in Appendix A. Asymptotic bias for sensitivity

and specificity is defined as SENS∗ − SENS and SPEC∗ − SPEC, respectively.

First, we examined the case of completely at random verification (i.e., rs = r for all

s = 1, 2, .., J). We initially examined the asymptotic bias of estimators of sensitivity and

specificity when we falsely assumed a GRE model and when the true model is a FM model

as well as when we falsely assumed a FM model and the true model is a GRE model.

dependence structure. This reciprocal misspecification with the FM and GRE models is an

extreme type of misspecification since the two models are so different.

Table 3 shows the results for various proportions of completely-at-random verification

for five tests and a presumed constant sensitivity and specificity, with the true model being

the FM model and the misspecified model being the GRE model. When we have no gold

standard information (r = 0), there is serious bias under a misspecified dependence structure

and the expected individual contribution to the log-likelihood under the correctly specified

model is nearly identical (to more than 6 digits) to the expected log-likelihood under the

correctly specified model, which is consistent with results reported in Albert and Dodd

(2004). Thus, with no gold standard reference and with five tests, estimates of diagnostic
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error may be biased under a misspecified dependence structure, yet it may be very difficult

to distinguish between models in most situations. As little as 2% gold standard verification

(r = 0.02), reduces the bias considerably and the expected log-likelihoods are no longer

nearly identical making it simpler to distinguish between models. With 20% verification, the

bias is small. For complete verification (r=1), marginal quantities such as sensitivity and

specificity are nearly unbiased under a misspecified dependence structure. This is consistent

with work by Tan et al. (1999) and Heagerty and Kurland (2001) who showed for clustered

binary data that marginal quantities (which sensitivity, specificity, and prevalence are) are

robust to misspecification of the dependence structure. The large differences in expected

log-likelihoods suggest that it will be relatively simple to distinguish between models.

Table 4 shows asymptotic bias with five tests when the true model is the GRE model

and the misspecified model is the FM model. As in Table 3, there is substantial asymptotic

bias under the misspecified model when there is no gold standard evaluation. In addition,

the expected log-likelihood for the misspecified model is nearly identical to the expected log-

likelihood for the correctly specified model, again showing the difficulty in choosing between

competing models with no gold standard information with few tests. Similar to the results

in Table 3, estimates of prevalence, sensitivity, and specificity are asymptotically unbiased

under the misspecified model when there is complete gold standard evaluation (r = 1). Unlike

the results in Table 3, a larger percentage of verification (about 50%) is necessary to achieve

approximate unbiasedness. In both cases, however, a small percentage of verification results

in different expected log-likelihoods under the true and misspecified models, suggesting that

it is simpler to choose between competing models with even a small percentage of gold

standard verification.

Tables 3 and 4 provide an assessment of asymptotic bias under reciprocal model mis-

specification for both the FM and GRE models when the sensitivity and specificity are 0.75

and 0.9, respectively. We also examined the relative asymptotic bias for a wide range of

sensitivity and specificity (a grid ranging from values of 0.65 to 0.95 for both sensitivity

and specificity) corresponding to the cases specified in these tables for r = 0.5. Figure 1
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shows the results corresponding to the models and parameters described in Table 3 when

σ1 = 3. Over the wide range of sensitivity and specificity, the maximum relative % bias for

sensitivity was 2.8% and for specificity was 5.1%. Other scenarios provided similar results

with all percent biases being less than 6% over the grid (data not shown).

We examined asymptotic bias of the FM and GRE models under alternative depen-

dence structures. Specifically, we examined the asymptotic bias when the true conditional

dependence structure P (Y i|di) is a Bahadur model (Bahadur, 1961), a log-linear model

(Cox, 1972), and a Beta-binomial model, where a description of each of these models is

provided in the Appendix B. All three alternative models were formulated so they had the

same number of parameters as the GRE and FM models. For the Bahadur model, we

considered the special case of only pairwise conditional dependence between tests (i.e., all

three and higher-order interactions are set to zero). For example, the conditional distrib-

ution of Y i|di is P (Yi|di = 1) =
{ J∏

j=1

SENSYij (1 − SENS)1−Yij
}
(1 +

∑
j<k

ρ1eijeik), where

eij =
Yij−SENS√

SENS(1−SENS)
and ρ1 = E[eijeik|di = 1] for all j �= k for any i. Similar to Tables

3 and 4 for reciprocal model misspecification, we evaluated asymptotic bias of sensitivity

and specificity for an increasing fraction r of completely at random verification under a

GRE and FM model when the true model was the Bahadur model. For five tests (J = 5),

SENS = SPEC = 0.75, and Pd = 0.20, sensitivity and specificity were nearly asymptoti-

cally unbiased under both the GRE and FM models with 20% completely random verification.

For example, under a GRE model, SENS∗=0.50, 0.63, 0.72, 0.74, and 0.75 for r=0, 0.02,

0.2, 0.5, and 1. Under a FM model, SENS∗=0.61, 0.73, 0.78, 0.76, and 0.75 for these values

of r.

For all three alternative models, we examined the bias in sensitivity and specificity of

the GRE and FM models with 50% completely random verification over a wide range of

sensitivity and specificity values (identical to the grid described for Figure 1) for a prevalence

of 0.20. Table 5 shows that the maximum relative asymptotic bias was less than 7% for both

sensitivity and specificity for all three alternative models. Thus, estimates of diagnostic error

appear to be quite robust with 50% completely random verification. When prevalence was

11



very low or very high (e.g., below 5% or above 95%) there was more substantial bias under

certain model misspecification with 50% completely random verification. For example, for

a prevalence of 0.05 when the true model was the log-linear model, there was a maximum

bias of 10% under a GRE model (as compared a maximum bias of 4.3% for a prevalence

of 0.20). However, unlike when there is no gold standard evaluation (r = 0), it is much

easier to identify the better fitting model using likelihood and other criterion for model

assessment. Further, for a rare disease, completely random verification would not generally

be recommended due to efficiency considerations.

While random verification is of concern for our application, we also consider verification

biased sampling because it is so common. We examine asymptotic properties under a mis-

specified dependence structure with verification biased sampling. Table 6 shows asymptotic

bias and expected log-likelihoods for the situation in which a random sample of cases among

those who test positive on at least one of the 5 tests are verified (e.g., extreme verification

biased sampling) and where the true model is the FM model and the misspecified model

is the GRE model. Interestingly, these results suggest that, in some cases, an increase in

the proportion verified can result in an increase in bias under the misspecified model. For

example, when η1 = 0.5 and η0 = 0.2, the estimator of sensitivity is only slightly asymptot-

ically biased (SENS∗=0.77) with no gold standard evaluation (rs = 0 for s = 0, 1, 2, .., 5)

and substantial bias (SENS∗=0.57) under complete verification of any case with positive

tests (r0 = 0 and rs = 1 for s = 1, 2, .., 5). This result is consistent with our simulation

results, which are presented in the next section. This problem occurs more generally under a

wide range of verification biased sampling. For example, situations where one over-samples

discrepant cases can result in bias under model misspecification. Bias can also increase with

an increasing proportion of verification of discrepant cases. As an illustration, under com-

pletely random verification, when the true model is the FM model as described in Table

3 with η1 = 0.5, the sensitivity converges to SENS∗ = 0.76 and is nearly unbiased when

r = 0.2. When we over-sample discrepant cases r0 = r5 = 0.20 and rs = 0.4, for s = 1, 2, 3,

and 4, estimates of sensitivity are more asymptotically biased (SENS∗ = 0.73). The asymp-
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totic bias is increased further (SENS∗ = 0.71) when rs, s = 2, 3, and 4 is changed from 0.4

to 1. We found similar results when the true model was the GRE model and the misspecified

model was the FM model.

In the next section, we examine the finite sample results for both robustness and efficiency

when we observe partial gold standard information.

5 Finite Sample Results

We examine bias, variability and model selection of the different models using simulation

studies. Table 7 shows the effect of model misspecification on estimates of prevalence, sensi-

tivity and specificity when the true model is a FM model and we fit the misspecified GRE.

Results are shown for sample sizes of I = 100 and I = 1000 and for various proportions

of random verification r. Similar to simulations in Albert and Dodd (2004), we found that

when r = 0 estimates of sensitivity, specificity, and prevalence are biased under a misspecified

model and it is difficult to distinguish between models based on likelihood comparisons. In

addition, estimates under the misspecified GRE model are substantially more variable than

estimates under the correctly specified FM model. However, with only a small percentage of

samples verified, estimation of sensitivity, specificity, and prevalence have improved statisti-

cal properties. Table 7 shows that bias is substantially reduced when only 5% of cases are

verified. With as little as 20% random verification, estimates of sensitivity, specificity, and

prevalence are nearly unbiased under model misspecification. In addition, variance estimates

are very similar under the misspecified model relative to the correctly specified model. Under

complete verification (r = 1), there is essentially no effect to misspecifying the dependence

structure. The table suggests that there are other advantages to measuring the gold stan-

dard test on at least a fraction of samples or individuals. First, there is a large pay-off in

efficiency. For sensitivity, under the correct FM model with I = 1000, the efficiency gain

relative to no gold standard information (r = 0) is 46%, 276%, and 640% for 5%, 20%, and

100% gold standard evaluation (these calculations were based on variance estimates com-

puted to the fourth decimal place, while the standard errors in Table 7 are only presented
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to the second decimal place). This decrease in variance is even more sizable under the mis-

specified GRE model. Second, it becomes increasingly easier to distinguish between models

for the dependence structure with increasing r. In Table 7 we show the percentage of times

the correctly specified FM model is chosen to be superior than the misspecified GRE based

on the criterion of a separation of likelihoods greater than 1. With five tests (J = 5) and

a sample size of I = 1000, the correctly specified FM was declared to be superior 12% of

the cases when there was no gold standard tests. The ability to choose the correct model

increased dramatically with even a small fraction of gold standard evaluation. With only

5%, 20%, and 100% verification, the correct model was identified in 45%, 64%, and 79% of

the cases.

Table 8 shows the effect of model misspecification on estimates of sensitivity and speci-

ficity when the true model is a GRE model and the misspecified model is the FM model. As

with the asymptotic results in this situation, a random sample of larger than 20% reference

standard evaluation is needed to get approximately unbiased estimates under the misspeci-

fied model. However, unlike when r = 0, where it is difficult to choose the correct model (by

the criterion that the log-likelihood for the GRE model was larger than the log-likelihood

for the FM model by more than one), we can choose between the GRE and FM model with

high probability when r = 0.2.

We also examined the robustness of the GRE and FM models when the true dependence

structure is governed by a Bahadur model. Specifically, we simulated data with the condi-

tional dependence structure (P (Y i|di)) given by a Bahadur model with pairwise correlation

of 0.2 and all three and higher way correlations equal to zero. Further, data were simulated

corresponding to SENS = SPEC = 0.75, Pd = 0.20, I = 1000, and J = 5. For r = 0, there

was substantial bias under the misspecified GRE and FM models. In this case, the average

sensitivity and specificity were 0.52 (SE=0.09) and 0.68 (SE=0.05) under the GRE model

and 0.65 (SE=0.06) and 0.87 (SE=0.04) under the FM model. In addition, it was difficult

to distinguish between the correctly specified Bahadur model and the GRE or FM models.

For example, the misspecified FM model had a larger likelihood than the correctly specified
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Bahadur model in 40% of the simulated realizations. Both the GRE and FM models resulted

in nearly unbiased estimates of sensitivity and specificity for r = 0.20. The average estimates

of sensitivity and specificity were 0.73 (0.03) and 0.74 (0.01) for the GRE model and 0.77

(0.03) and 0.77 (0.01) for the FM model when r=0.2. Also, the likelihood for the correctly

specified model was larger than the likelihood of the FM and GRE model in greater than

99% of the simulated realizations. Thus, with only 20% completely random verification,

both the GRE and FM models are robust to model misspecification and it is relatively easy

to distinguish between models.

Table 9 shows simulation results for the case of four raters under a correctly specified FM

model and misspecified model GRE model. Estimates of sensitivity and specificity, which are

seriously biased with no gold standard evaluation are nearly unbiased under the misspecified

model with 20% random verification. As in Table 7, this table illustrates the pay-off in

efficiency with at least some partial gold standard evaluation, under both the correct and

misspecified model. This table also shows the percentage of realizations where the FM

model has a larger likelihood than the GRE. Unlike with no gold standard evaluation, the

FM model is almost always correctly identified with 20% verification. In addition, unlike

with r = 0, models with 20% verification result in the correct ordering of sensitivity and

specificity almost all the time. We also performed simulations for the case of four raters

when the true model is a GRE model and the misspecified model is the FM model. Under

the misspecified FM model, bias is substantially reduced for r = 0.20 as compared to r = 0.

Furthermore, estimates of sensitivity, specificity, and prevalence computed under the FM

model were nearly unbiased for r = 0.5 (data not shown).

Next, we examine verification biased sampling. Our asymptotic results show that es-

timates of diagnostic error and prevalence can be biased when we over-sample discrepant

cases under a misspecified model, which was in contrast to results with random verification.

We conducted simulations to examine this further. We examine bias in sensitivity, speci-

ficity, and prevalence estimates from a GRE model when the FM model is the correct model.

We simulated under a FM model with J = 5, I = 100, η0 = 0.20, η1 = 0.50, Pd = 0.20,
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SENS = 0.75, and SPEC = 0.90 (same parameters as in rows 5-8 in Table 3) and fit both

the correctly specified FM and the misspecified GRE model. When all individuals with at

least one positive value were verified (rs = 1 for s = 1, 2, .., 5 and r0 = 0), we had sizable bias

under the misspecified model. Average estimates of prevalence, sensitivity, and specificity

were 0.27 (SE=0.08), 0.61 (SE=0.13), and 0.89 (0.02) under the misspecified GRE model

and were 0.20 (0.04), 0.75 (0.07), and 0.90 (0.02) under the correct model.

Under the correctly specified model, over-sampling discrepant cases may improve pre-

cision of our estimates. Thus, an interesting question is whether the increase in efficiency

from over-sampling discrepant cases is worth the potential of serious bias under a misspec-

ified model. We conducted a simulation where we simulated under a finite mixture model

and fit both the correctly specified FM models and the misspecified GRE model both un-

der completely random verification and under a verification process where we over-sample

discrepant cases. We simulated data with J = 5, I = 1000, Pd = 0.2, η1 = 0.5, η0 = 0.2,

SENS = 0.75 and SPEC = 0.90. We over sampled by obtaining a gold standard result on

40% of discrepant cases and only 5% of cases where Y i are all concordant. For the com-

pletely at random verification cases, we chose 21% verification to correspond to the overall

proportion of verification in the over sampling cases. Figure 2 shows the distribution of sen-

sitivity estimates for each of the four scenarios. The figure shows that there is an efficiency

gain in estimating sensitivity by over-sampling discrepant cases. Specifically, there is a 28%

efficiency gain in over-sampling as compared to completely random verification. In addition,

the figure demonstrates the robustness of sensitivity estimates to model misspecification un-

der completely random verification and the lack of robustness under over-sampling. In this

particular case, the pay-off in efficiency with over-sampling under the correct model is small

relative to the potential for bias due to model misspecification. Furthermore, the correct

model was definitely selected more often under completely random verification than under

over-sampling. The FM model had a likelihood greater than 1 more than the GRE model

in over 99.5% and 54% of the simulations under completely random verification and under

the mechanism that over-samples discrepant cases, respectively.
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6 Gastric Cancer Example Continued

Next we return to the gastric cancer data set and use only partial gold standard evaluation.

Our initial focus is on examining verification which is completely at random. We evaluated

designs with different probabilities of verification (r). In order to capture the variability

associated with different amounts of verified sampling, we resample data with replacement

and incorporate the reference standard on a given image with probability r. Table 10 shows

results for an assumed common and for an assumed rater-specific sensitivity and specificity

for r ranging from 0.1 to 0.8. In each situation, we fit both the FM and the GRE models.

A comparison of these results with those presented for complete verification and for no gold

standard evaluation (Tables 1 & 2) is most revealing. The results suggest that the common

as well as the rater-specific estimates for r = 0.50 are close to those presented for complete

verification. In addition, the results for r = 0.2, although not very close to those presented

for the complete verification case, are substantially closer than those estimated with the

latent class models under r = 0 (Table 2).

We also examined extreme bias verification. Specifically, we evaluated a design whereby

we verified all images in which at least one of the 6 radiologists rated the image positive for

gastric cancer (52% of images were declared positive by at least one radiologist). As with

random verification, we constructed data sets by re-sampling images with replacement and

incorporating reference standard information whenever a positive image for any radiologist

was recorded. For a common sensitivity and specificity, estimates of sensitivity, specificity,

and prevalence were 0.78 (SE=0.05), 0.90 (0.01), and 0.23 (0.04) for the FM model and

0.72 (0.11), 0.90 (0.02), and 0.23 (0.06) for the GRE model, respectively. There was greater

discrepancy between the estimates across the two models under extreme verification bias

than for a comparable proportion verified under a completely random verification mechanism

(r=0.50 in Table 10). Large differences between the FM and the GRE model for rater-specific

estimates were also found (data not shown). These results, along with the analytic and

simulation results, demonstrate less robustness under verification biased sampling.
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7 Discussion

It has been shown in previous work that estimates of diagnostic error and prevalence are

biased under a misspecified model for the dependence between tests and that, with only a

small number of tests, it is difficult to distinguish between models for the dependence struc-

ture using likelihood and other model diagnostics (Albert and Dodd, 2004). Under complete

verification, results on generalized linear mixed models would suggest that the estimation

of marginal quantities (which prevalence, sensitivity, and specificity are ) are insensitive to

misspecification of the dependence between tests (Tan et al., 1999; Heagerty and Kurland,

2001). Our results confirm this. Furthermore, we showed that it is much simpler to dis-

tinguish between models with complete verification. A natural question is whether gold

standard verification on even a small percentage of cases improves the statistical properties

of estimators of sensitivity, specificity, and prevalence. We examined both whether observ-

ing partial verification lessens the bias when the dependence structure is misspecified and

whether one is able to more easily distinguish between different models for the dependence

structure between tests. For the situation where verification is independent of the test results

Y i, gold standard evaluation on even a small percentage of cases greatly lowers the bias for

estimating prevalence, sensitivity, and specificity, under a misspecified model. In addition,

identifying the correct model for the dependence structure using likelihood comparisons be-

comes much easier with even a small percentage of gold standard evaluation. Although there

are advantages to performing the gold standard test on as many individuals as possible, this

is not often possible due to limited resources. Our results suggest that between 20% and

50% gold standard evaluation results in large improvements in robustness, efficiency, and the

ability to choose between competing models over no gold standard information. If the gold

standard test is expensive, performing the gold standard test on more than 50% of patients

may not be cost-effective.

We also examined situations in which the probability of verification depends on observed

test results (i.e., verification biased sampling). An important special case of verification

biased sampling is extreme verification biased sampling where individuals who test negative
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on all tests do not receive gold standard evaluation. Such verification sampling occurs in

situations where the gold standard is invasive (e.g., surgical biopsy) and it is considered

unethical to subject a patient to the invasive test when there is little evidence for disease.

Unlike for a single test where sensitivity, specificity, and prevalence are not identifiable under

extreme verification bias sampling (Begg and Greenes, 1983; Pepe, 2003), these quantities are

identifiable with multiple tests and an assumed model for the dependence between these tests.

However, unlike the case where verification is completely at random, estimates of sensitivity,

specificity, and prevalence may not be robust to misspecification of the dependence between

tests with a large fraction of verification.

A gold standard can be defined in various ways depending on the scientific interest.

The gold standard test could be a laboratory test, a consensus evaluation of an image, or an

assessment of clinical disease. The nature of the gold standard will determine how diagnostic

accuracy is interpreted. In the gastric cancer study, the gold standard was a consensus

assessment (across three radiologists) of all available clinical information including imaging

data. All suspect gastric cancers were confirmed with biopsies, while patients who were

negative had limited follow-up of two months to see if gastric cancer symptoms developed.

A longer follow-up would have been ideal in assuring that these negative cases did not develop

gastric cancer.

Other types of verification biased sampling schemes may be employed to improve effi-

ciency. For example, our simulation results show that over-sampling discrepant cases can

result in improved efficiency over sampling completely at random. Our results further show

that, although over-sampling discrepant cases can improve efficiency, such a strategy loses

the attractive feature of decreasing bias with an increasing proportion of verification found

for a completely random verification mechanism. In addition, our results suggest that for

a comparable proportion of verification, choosing the correct model for the dependence be-

tween tests is more difficult for a verification process in which we over-sample discrepant

cases as compared with completely random verification.

Irwig, et al. (1994) and Tosteson (1994) have considered optimal design strategies for the
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case of a single diagnostic test. Optimal design for multiple correlated tests is an area for

future research. However, the choice of an optimal design will depend heavily on assumed

models and parameter values for the dependence between tests. For this reason, we question

the practicality of developing an optimal design in this situation.

A common criticism of latent class models for estimating sensitivity, specificity, and

prevalence without a gold standard is that, without a gold standard, it is difficult to con-

ceptualize sensitivity and specificity (Alonzo and Pepe, 2003). Partial verification lessens

the problem of conceptualizing the truth since a gold standard test needs to be defined and

evaluated on at least a fraction of the cases.

The different models presented for analyzing partial verification data use a latent class

structure for observations that do not have gold standard evaluation. In contrast with the

full latent class modeling used when there is no gold standard evaluation, the semi-latent

class approach is more conceptually appealing, more robust under verification completely

at random, and allows for model comparisons using likelihoods with only small number of

tests.

Acknowledgments

We thank Dr. Iinuma for providing us access to the Gastric Cancer dataset. We thank Dr.

Seirchiro Yamamoto for helping us get access to the data as well as for helpful conversations.

We thank the Center for Information Technology, NIH, for providing access to the high

performance computational capabilities of the Beowulf cluster computer system. We also

thank the editor, associate editor, and two reviewers for their thoughtful and constructive

comments which have lead to an improved paper.

Figure Legend

Figure 1: Contour plot of relative asymptotic bias in sensitivity and specificity for 50%

completely at random verification when the true model is a GRE model with Pd = 0.20,
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σ0 = 1.5, σ1 = 3, and J = 5. Relative asymptotic bias of sensitivity and specificity is defined

as (SENS∗ − SENS)/SENS and (SPEC∗ − SPEC)/SPEC, respectively. The contour

plot was generated for sensitivities and specificities over an equally spaced grid ranging from

0.65 to 0.95 with 400 points.

Figure 2: Distribution of Estimates of sensitivity using the FM and GRE model under

completely random (CR) verification as well as under over-sampling. Data were simulated

under a FM model with J = 5, I = 1000, SENS = 0.75, SPEC = 0.90, Pd = 0.2, η1 = 0.5,

and η0 = 0.2. 1000 simulated realizations were obtained.

APPENDIX

A. Expected individual contribution to the Log Likelihood Under a Correct and Misspecified

Model

This is evaluated under the assumption of a common sensitivity and specificity across J

tests, where the number of positive tests S is a sufficient statistic. Denote ZSd as an indicator

of whether the individual is verified, has S of J positive tests, and is verified with disease

status d. Let XS be an indicator for an individual not being verified and having S positive

tests. Denote T as the true model and M as the assumed model. The expected (under T )

log-likelihood of the assumed model M is

ET [logL(Y i, θM)] =

1∑
d=0

J∑
s=0

ET [Zsd]log[PM(S = s|D = d)PM(D = d)]

+

J∑
s=0

ET [Xs]log[PM(S = s|D = 0)PM(D = 0)

+ PM(S = s|D = 1)PM(D = 1)] + Cv, (5)

where PM(S|D) and PT (S|D) is the conditional distribution for the sum of J binary tests

from the assumed and true models, respectively. Additionally, PM(D) and PT (D) is the

probability of disease under the assumed and true models, respectively, and Cv is a constant

corresponding to the verification process. Denote rs = P (Vi|S = s) as the probability of
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verification for a particular observed sum s. The expected values ET [Zsd] and ET [Xs] can

be expressed as

ET [Zsd] = rsP (S = s|D = d)P (D = d) (6)

and

ET [Xs] = (1 − rs)[P (S = s|D = 1)P (D = 1) + P (S = s|D = 0)P (D = 0)]. (7)

B. Alternative models for the conditional dependence between tests

Bahadur model: Let πij be the probability of a positive response conditional on di for

the jth test on the ith subject. Let eij =
Yij−πij√
πij(1−πij)

and let ρijk = E[eijeik|di], ρijkl =

E[eijeikeil|di], ..., ρijkl...J = E[eijeikeil...eiJ |di]. The probability distribution can be expressed

as f(Y i|di) = g(Y i|di)
J∏

j=1

π
Yij

ij (1−πij)
1−yij , where g(Y i) = 1+

∑
j<k

ρijk eijeik+
∑

j<k<l

ρijkleijeikeil+

... + ρijkl...Jeijeikeil...eiJ .

log-linear model: The probability distribution can be expressed as f(Y i|di) = exp
( J∑

j=1

θjYij+∑
j<k

θjkYijYik + ... + θjk...JYijYik...YiJ + ∆
)
, where ∆ is a normalization factor so that f(yi|di)

sum to one over all values of yi.

Beta-binomial model: This distribution assumes that the probability of a positive test (con-

ditional on di) is common across the J tests. The probability distribution is P (Y i|di) =

B(S + α, J − S + β)/B(α, β), where S =
J∑

j=1

yij which depends on two parameters α and β.
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Table 1: Estimation of overall prevalence, sensitivity and specificity for digital radiography
using no gold standard (GS) and with the consensus rating as the gold standard. Models
were fit under the conditional independence (CI) finite mixture (FM), and Gaussian random
effects model (GRE) using linuma et al.’s data.

GS No GS
Pd CI 0.24 (0.04)1 0.18 (0.04)

GRE 0.24 (0.04) 0.16 (0.10)
FM 0.24 (0.04) 0.17 (0.04)

SENS CI 0.75 (0.06) 0.89 (0.05)
GRE 0.75 (0.06) 0.92 (0.19)
FM 0.75 (0.06) 0.91 (0.05)

SPEC CI 0.91 (0.01) 0.89 (0.02)
GRE 0.91 (0.01) 0.88 (0.03)
FM 0.91 (0.01) 0.90 (0.02)

1 standard errors were estimated using a bootstrap with 1000 bootstrap samples.
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Table 2: Estimation of prevalence and rater-specific sensitivity and specificity for digital
radiography with no gold standard (GS) and with the consensus rating as the gold standard.
Models were fit under the conditional independence (CI), finite mixture (FM), and Gaussian
random effects model (GRE)1 using linuma et al.’s data .

CI GRE FM
GS No GS GS No GS GS No GS

Pd Est 0.24 0.18 0.24 0.22 0.24 0.22
SE (0.04)2 (0.04) (0.04) (0.07) (0.04) (0.07)

Rater 1 SENS Est 0.67 0.88 0.66 0.77 0.67 0.78
SE (0.09) (0.11) (0.09) (0.16) (0.09) (0.11)

SPEC Est 0.99 0.99 0.99 1.00 0.99 1.00
SE (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Rater 2 SENS Est 0.78 0.89 0.77 0.80 0.78 0.81
SE (0.08) (0.07) (0.08) (0.14) (0.08) (0.08)

SPEC Est 0.87 0.85 0.87 0.86 0.87 0.86
SE (0.04) (0.04) (0.04) (0.05) (0.04) (0.04)

Rater 3 SENS Est 0.52 0.68 0.51 0.57 0.52 0.57
SE (0.10) (0.13) (0.10) (0.14) (0.10) (0.13)

SPEC Est 0.99 0.99 0.99 0.97 0.99 0.99
SE (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Rater 4 SENS Est 0.81 1.00 0.82 0.92 0.81 1.00
SE (0.07) (0.05) (0.07) (0.14) (0.08) (0.01)

SPEC Est 0.97 0.95 0.97 1.00 0.97 0.99
SE (0.02) (0.03) (0.02) (0.03) (0.02) (0.03)

Rater 5 SENS Est 0.85 1.0 0.86 0.92 0.85 0.92
SE (0.07) (0.05) (0.07) (0.14) (0.07) (0.04)

SPEC Est 0.72 0.71 0.72 0.72 0.72 0.72
SE (0.05) (0.05) (0.05) (0.06) (0.05) (0.05)

Rater 6 SENS Est 0.89 0.94 0.88 0.84 0.89 0.85
SE (0.06) (0.07) (0.07) (0.09) (0.06) (0.06)

SPEC Est 0.90 0.85 0.89 0.86 0.90 0.86
SE (0.03) (0.04) (0.03) (0.05) (0.03) (0.04)

1 There are 13 (2J +1) parameters for the CI model and 15 (2J +3) parameters for the FM
and GRE models.
2 standard errors were estimated using a bootstrap with 1000 bootstrap samples.
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Table 3: Large sample robustness of the assumed Gaussian random effects (GRE) model
to the true dependence structure between tests given by the finite mixture (FM) model.
Verification is independent of Y i, and r denotes the proportion of random samples verified
(i.e., P (Vi = 1) = r). The true model is a FM with η0 = 0.2, Pd = 0.20, SENS = 0.75,
and SPEC=0.9 for differing r and η1 and with J = 5. Asymptotic bias for sensitivity and
specificity is SENS∗ − SENS and SPEC∗ − SPEC, respectively.

Estimators Expected Log-likelihood1

misspecified Model

r η1 P ∗
d SENS∗ SPEC∗ EFM[logLFM] EFM[logLGRE]

0 0.2 0.41 0.45 0.92 -2.24106 -2.24106
0.02 0.21 0.71 0.90 -2.24327 -2.24374
0.2 0.20 0.74 0.90 -2.26317 -2.26454
1 0.20 0.75 0.90 -2.35160 -2.35410
0 0.5 0.15 0.77 0.86 -2.10467 -2.10476

0.02 0.16 0.75 0.87 -2.10796 -2.10973
0.20 0.18 0.76 0.89 -2.13749 -2.14648
1 0.20 0.76 0.90 -2.26875 -2.28668

1 Expected individual contribution to the log-likelihood.

Table 4: Large sample robustness of the assumed finite mixture (FM) model to the true
dependence structure between tests given by the Gaussian random effects (GRE) model.
Verification is independent of Y i and r denotes the proportion of random samples verified
(i.e., P (Vi = 1) = r). The true model is a GRE model with Pd = 0.2, SENS = 0.75,
SPEC = 0.9, σ0 = 1.5 and J = 5 for differing r.

Estimators Expected Log-likelihood1

misspecified Model

r σ1 P ∗
d SENS∗ SPEC∗ EGRE[logLGRE] EGRE[logLFM]

0 1.5 0.22 0.84 0.94 -1.74339 -1.74339
0.2 0.21 0.82 0.93 -1.78383 -1.81920
0.5 0.20 0.78 0.91 -1.86950 -1.91198
1 0.20 0.75 0.90 -1.99560 -2.05440
0 3 0.22 0.86 0.95 -1.61806 -1.61806

0.2 0.21 0.82 0.93 -1.67106 -1.70415
0.5 0.20 0.76 0.90 -1.75057 -1.79748
1 0.20 0.75 0.90 -1.88307 -1.95351

1 Expected individual contribution to the log-likelihood.
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Table 5: Range in relative asymptotic bias for the GRE and FM models when the true condi-
tional dependence structure is (i) Bahadur model with all three and higher way correlations
equal to zero, (ii) a log-linear model with a three way interaction, and a (iii) beta-binomial
model. The range is over a range of sensitivities and specificities between 0.65 and 0.95. The
range in relative bias is for Pd = 0.20, J = 5, and for 50% completely random verification
(r = 0.5).

True Model GRE FM
Bahadur model1 SENS -2.8% to 0.19% -0.83% to 4.4%

SPEC -0.75% to 0.18% -0.40% to 1.6%

Log-linear model 2 SENS 0% to 4.3% 0% to 7.0%

SPEC -0.20% to 1.3% 0% to 3.7%

Beta-binomial model 3 SENS -0.13% to 0% 0.17% to 4.3%

SPEC -0.07% to 0.05% 0.14% to 3.8%

1 Bahadur model with two-way correlations of 0.20 and all three and higher-way correlations
equal to zero.
2 log-linear model with logP (Y i|di) = βdi

+ 0.5I + ∆, where I is an indicator which is equal
to one if at least three or more of the Yij’s are equal to one and where ∆ is a normalizing
constant so that P (Y i|di) sum to one over all possible Y i. The parameters βdi

were chosen
to correspond to the different values of sensitivity and specificity.
3 P (Y i|di) followed beta-binomial distributions with β = 0.4 (for both di = 0 or 1) and α
varied corresponding to the desired sensitivity or specificity.
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Table 6: Large sample robustness of the assumed Gaussian random effects model (GRE)
when the true dependence structure between tests is a finite mixture model (FM). Verification
is restricted to those patients who screen positive on at least one test and r is the proportion

of samples who are verified at random from those patients (i.e., P (Vi = 1|
J∑

j=1

yij = s) = 0 if

s = 0 and r, otherwise). The true model is a FM with η0 = 0.2, Pd = 0.2, SENS=0.75 and
SPEC=0.9 for differing r and η1 and with J = 5.

Estimators Expected Log-likelihood1

misspecified Model

r η1 P ∗
d SENS∗ SPEC∗ EFM[logLFM] EFM[logLGRE]

0 0.2 0.41 0.45 0.92 -2.24106 -2.24106
0.02 0.22 0.70 0.90 -2.24359 -2.24319
0.2 0.20 0.73 0.90 -2.26357 -2.26241
1 0.20 0.75 0.90 -2.34997 -2.34782
0 0.5 0.15 0.77 0.86 -2.10467 -2.10476

0.02 0.16 0.74 0.87 -2.10903 -2.10758
0.20 0.25 0.57 0.88 -2.13865 -2.13370
1 0.26 0.57 0.89 -2.25944 -2.24983

1 Expected individual contribution to the log-likelihood.
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Table 7: Simulations with a common sensitivity and specificity. Data was simulated under
the finite mixture (FM) model with Pd = 0.2, η0 = η1 = 0.2, SENS = 0.75,SPEC = 0.90,
and J = 5. Results are based on 1000 simulations. Mean parameter estimate and standard
errors in ( ) are presented.

FM model Avg. est. GRE model Avg est.
I r Pd SENS SPEC Pd SENS SPEC %(logLFM >> logLGRE)1

100 0 0.20 0.75 0.90 0.25 0.64 0.88 2%
(0.05) (0.10) (0.03) (0.13) (0.18) (0.04)

100 0.05 0.20 0.76 0.90 0.19 0.74 0.88 7%
(0.05) (0.09) (0.02) (0.09) (0.13) (0.04)

100 0.10 0.20 0.75 0.90 0.19 0.75 0.89 10%
(0.05) (0.09) (0.02) (0.07) (0.11) (0.03)

100 0.20 0.20 0.75 0.90 0.20 0.75 0.90 12%
(0.04) (0.07) (0.02) (0.05) (0.08) (0.02)

100 0.50 0.20 0.75 0.90 0.20 0.75 0.90 16%
(0.04) (0.06) (0.02) (0.04) (0.06) (0.02)

100 1 0.20 0.75 0.90 0.20 0.75 0.90 19%
(0.04) (0.05) (0.02) (0.04) (0.05) (0.02)

1000 0 0.19 0.75 0.90 0.32 0.57 0.91 12%
(0.02) (0.04) (0.01) (0.12) (0.16) (0.02)

1000 0.05 0.19 0.75 0.90 0.20 0.73 0.90 45%
(0.02) (0.03) (0.01) (0.03) (0.05) (0.01)

1000 0.10 0.20 0.75 0.90 0.20 0.74 0.90 55%
(0.02) (0.03) (0.01) (0.02) (0.03) (0.01)

1000 0.20 0.20 0.75 0.90 0.20 0.74 0.90 64%
(0.01) (0.02) (0.01) (0.02) (0.03) (0.01)

1000 0.50 0.20 0.75 0.90 0.20 0.75 0.90 75%
(0.01) (0.02) (0.01) (0.01) (0.02) (0.01)

1000 1 0.20 0.75 0.90 0.20 0.75 0.90 79%
(0.01) (0.02) (0.01) (0.01) (0.02) (0.01)

1 Proportion of realizations where the log-likelihood under the FM model is more than 1
larger than the log-likelihood under the misspecified GRE model.
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Table 8: Simulations with a common sensitivity and specificity. Data was simulated under
the Gaussian random effects (GRE) model with Pd = 0.2, σ0 = σ1 = 1.5, SENS = 0.75,
SPEC = 0.90, I = 1000, J = 5. Results are based on 1000 simulations.

FM model Avg. est. GRE model Avg est.
r Pd SENS SPEC Pd SENS SPEC %(logLGRE >> logLFM)1

0 0.24 0.84 0.95 0.20 0.73 0.88 0%
(0.03) (0.04) (0.01) (0.06) (0.18) (0.06)

0.2 0.22 0.81 0.92 0.20 0.75 0.90 100%
(0.01) (0.04) (0.01) (0.02) (0.04) (0.01)

0.5 0.21 0.78 0.91 0.20 0.75 0.90 100%
(0.01) (0.03) (0.01) (0.02) (0.03) (0.01)

0.8 0.21 0.76 0.90 0.20 0.75 0.90 100%
(0.01) (0.03) (0.01) (0.01) (0.03) (0.01)

1 0.20 0.75 0.90 0.20 0.75 0.90 100%
(0.01) (0.02) (0.01) (0.01) (0.02) (0.01)

1 Proportion of realizations where the log-likelihood under the FM model is more than 1
larger than the log-likelihood under the misspecified GRE model.
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Table 9: Simulations with four tests with rater-specific sensitivity and specificity. Data
was simulated under the finite mixture (FM) model with Pd = 0.5, η0 = η1 = 0.5, with
SENS = 0.80, 0.85, 0.90, and 0.95 and SPEC = 0.95, 0.90, 0.85, and 0.80 for the four tests.
Results are based on 1000 simulations.

Test Truth Avg. Est.
r = 0 r = 0.20 r = 1

FM GRE FM GRE FM GRE
1 SENS 0.80 0.80 0.64 0.80 0.79 0.80 0.80

(0.08) (0.23) (0.03) (0.03) (0.02) (0.02)
SPEC 0.95 0.95 0.79 0.95 0.94 0.95 0.95

(0.03) (0.11) (0.01) (0.02) (0.01) (0.01)

2 SENS 0.85 0.85 0.72 0.85 0.84 0.85 0.85
(0.06) (0.20) (0.02) (0.02) (0.02) (0.02)

SPEC 0.90 0.90 0.72 0.90 0.89 0.90 0.90
(0.05) (0.10) (0.02) (0.02) (0.01) (0.01)

3 SENS 0.90 0.90 0.77 0.90 0.89 0.90 0.90
(0.05) (0.19) (0.02) (0.02) (0.01) (0.01)

SPEC 0.85 0.85 0.68 0.85 0.84 0.85 0.85
(0.06) (0.11) (0.02) (0.02) (0.012 (0.02)

4 SENS 0.95 0.95 0.79 0.95 0.94 0.95 0.95
(0.03) (0.21) (0.01) (0.02) (0.01) (0.01)

SPEC 0.80 0.80 0.64 0.80 0.79 0.80 0.80
(0.08) (0.13) (0.02) (0.02) (0.02) (0.02)

Pd 0.50 0.50 0.50 0.50 0.50 0.50 0.50
(0.07) (0.22) (0.02) (0.02) (0.02) (0.02)

%logLFM > logLGRE 0.63 0.95 0.97
% Order preserved SENS 0.85 0.74 0.96 0.95 0.98 0.98
% Order preserved SPEC 0.86 0.65 0.96 0.95 0.98 0.98
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Table 10: Estimation of overall and rater-specific sensitivity and specificity as well as preva-
lence for digital radiography using partial verification designs were evaluated. Individuals
were re-sampled with replacement to obtain a re-sampled dataset of 113 patients. Verification
was done completely at random with probability r. 1000 resampled datasets were obtained
and Means (SE) across these datasets are presented. Both the GRE and FM models were
used for estimation.

r = 0.10 r = 0.20 r = 0.50 r = 0.80
Rater FM GRE FM GRE FM GRE FM GRE

Overall Pd 0.21 0.22 0.22 0.23 0.23 0.24 0.24 0.24
(0.05) (0.07) (0.05) (0.06) (0.04) (0.05) (0.04) (0.04)

SENS 0.84 0.80 0.82 0.78 0.78 0.76 0.76 0.76
(0.08) (0.14) (0.08) (0.11) (0.07) (0.07) (0.06) (0.06)

SPEC 0.90 0.89 0.90 0.90 0.91 0.90 0.91 0.91
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01)

Pd 0.20 0.23 0.21 0.22 0.23 0.23 0.24 0.24
(0.05) (0.06) (0.05) (0.05) (0.04) (0.04) (0.04) (0.04)

1 SENS 0.81 0.75 0.76 0.72 0.71 0.69 0.68 0.67
(0.13) (0.16) (0.13) (0.15) (0.11) (0.11) (0.10) (0.10)

SPEC 0.99 1.00 0.99 1.00 0.99 0.99 0.99 0.99
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

2 SENS 0.85 0.76 0.83 0.76 0.80 0.76 0.79 0.77
(0.09) (0.13) (0.09) (0.12) (0.09) (0.10) (0.08) (0.09)

SPEC 0.86 0.86 0.87 0.86 0.87 0.87 0.97 0.87
(0.04) (0.05) (0.04) (0.05) (0.04) (0.04) (0.04) (0.04)

3 SENS 0.62 0.55 0.57 0.53 0.54 0.52 0.52 0.51
(0.13) (0.14) (0.14) (0.14) (0.11) (0.11) (0.11) (0.11)

SPEC 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
(0.01) (0.01) (0.01) (0.01) (0.011 (0.01) (0.01) (0.01)

4 SENS 0.96 0.90 0.93 0.88 0.87 0.85 0.83 0.83
(0.07) (0.14) (0.08) (0.13) (0.09) (0.10) (0.08) (0.08)

SPEC 0.97 0.98 0.97 0.98 0.97 0.97 0.97 0.97
(0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)

5 SENS 0.95 0.87 0.92 0.86 0.88 0.86 0.86 0.85
(0.07) (0.12) (0.08) (0.11) (0.08) (0.09) (0.06) (0.08)

SPEC 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72
(0.05) (0.06) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

6 SENS 0.91 0.82 0.90 0.83 0.88 0.85 0.89 0.87
(0.08) (0.13) (0.08) (0.11) (0.07) (0.09) (0.06) (0.07)

SPEC 0.86 0.86 0.87 0.87 0.88 0.88 0.89 0.88
(0.04) (0.05) (0.04) (0.05) (0.04) (0.04) (0.03) (0.04)
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