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SUMMARY 

Identifying genes that are differentially expressed between classes of samples is an 

important objective of many microarray experiments.   Because of the thousands of genes 

typically considered, there is a tension between identifying as many of the truly 

differentially expressed genes as possible, but not too many genes that are not really 

differentially expressed (false discoveries).  Controlling the proportion of identified genes 

that are false discoveries, the false discovery proportion (FDP), is a goal of interest.  In 

this paper, two multivariate permutation methods are investigated for controlling the false 

discovery proportion.  One is based on a multivariate permutation testing (MPT) method 

that probabilistically controls the number of false discoveries, and the other is based on 

the Significance Analysis of Microarrays (SAM) procedure that provides an estimate of 

the false discovery proportion.  Both methods account for the correlations among the 

genes. We find the ability of the methods to control the proportion of false discoveries 

varies substantially depending on the implementation characteristics.  For example, for 

both methods one can proceed from the most significant gene to the least significant gene 

until the estimated FDP is just above the targeted level (“top-down” approach), or from 

the least significant gene to the most significant gene until the estimated FDP is just 

below the targeted level (“bottom-up” approach).   We find that the top-down MPT-based 

method probabilistically controls the false discovery proportion, whereas our 

implementation of the top-down SAM-based method does not.  Bottom-up MPT-based or 

SAM-based methods can result in poor control of the FDP. 
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1. INTRODUCTION 

 Analysis of gene expression profiles can involve tens of thousands of genes.  To 

recognize the signal amid the noise leads to a multiple comparisons problem: when 

examining very many statistics, some will appear large and interesting even when there is 

nothing truly happening.  In this paper we will focus on identifying genes that are 

differentially expressed between two classes of expression profiles, e.g., microarray 

expression values obtained from normal tissue versus tumor biopsies.  Such gene 

identification is an important goal of many microarray investigations [1].  The idea is to 

find as many genes that are truly differentially expressed while controlling the number of 

(“null”) genes that are identified that are not truly differentially expressed (false positives 

or false discoveries).  There is a trade-off involved in procedures for identifying 

differentially expressed genes: the more stringent the procedure is in keeping the number 

of false discoveries low, the less sensitivity there will be to detect truly differentially 

expressed genes.  For example, suppose one uses a Bonferroni procedure and identifies 

genes from a set of 10,000 when their p-value from a two-sample univariate statistical 

test is less than .05/10,000.  This procedure will result in one or more false discoveries 

less than 5% of the time.  On the other hand, suppose one used a procedure that did not 

control for multiple comparisons and identified all genes whose p-values were less than 

.05.  Then, one could expect up to 500 (=.05 x 10,000) false discoveries.  The trade-off is 

that the Bonferroni procedure will identify many fewer truly differentially expressed 

genes than the latter procedure.    

 A compromise between insisting on no false discoveries and making no 

adjustment for multiple comparisons is to allow for some false discoveries, but not too 
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many.  For example, suppose we identified all genes whose p-values were less than .001.  

With 10,000 genes, one would expect 10 false discoveries on average using this 

procedure if all the genes were null.  Therefore, since some of the 10,000 genes are 

expected to be truly differentially expressed (i.e., non-null), the 10 false discoveries can 

be viewed as an upper bound for the expected number of false discoveries.  Rather than 

controlling for the expected number of false discoveries, Benjamini and Hochberg [2] 

discussed controlling the expected false discovery proportion, which they called the false 

discovery rate (FDR).  The false discovery proportion (FDP) for a given set of identified 

genes is the proportion of genes in that set that are truly null.  That is, FDP=V/D, where 

D is the number of genes identified and V is the number of these genes that are null. (The 

FDP is defined to be zero when no genes are identified, i.e., when D=0.) Note that 

FDR=E(FDP) is a constant associated with the experimental design and analysis method, 

whereas the FDP is a random variable that will change from realization to realization of 

the data. 

 Since the FDP is a random variable, we would like to know in what way it is 

probabilistically controlled by an analysis method.  Ideally, we would like to apply a 

procedure in a way that we can be α−1  confident (e.g., α−1 =80% confident) that the 

FDP (for the set of identified genes S) is less than γ  (e.g., γ  =10%).  In obvious 

notation, the condition is αγ −≥≤ 1))(( SFDPP .  This provides more control than 

bounding the FDR [3], which has been the focus of much of the previous work in this 

area; see Ge et al. [4] and Li et al. [5] for extensive reviews. 

 Many methods have been proposed for finding differentially expressed genes.  

For this investigation, we wanted to examine nonparametric multivariate permutation 
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methods which claim to provide control over false discoveries in a manner that could 

account for correlations among the genes and not require a large sample size (of arrays).     

We will not discuss analysis of variance models [6] or empirical Bayes methods [7-9] for 

expression data, which would be expected to be preferable when the number of arrays is 

very small and the distributional assumptions are satisfied [10]. 

 One of the multivariate permutation procedures we consider is based on 

extensions of multivariate permutation tests that control for no false positives [11,12] or a 

fixed number of false positives [3].  The other procedure we consider is an extension of 

Significance Analysis of Microarray (SAM) [13] that estimates the number of false 

positives for fixed cut-offs of functions of average class differences.  SAM is a widely 

used procedure; the SAM paper [13] has been referenced more than 1750 times as of this 

date (ISI Web of Science).  We describe the procedures in the next section, and in section 

3 we evaluate their FDP-controlling properties.  Section 4 presents an example involving 

genes that are differentially expressed in different types of breast cancer tumors.  We end 

with a brief discussion of extensions to experimental designs other than the unpaired two-

class comparison. 

 

2. METHODS 

Both the MPT-based methods and the SAM-based methods involve permuting the class 

labels to form new datasets on which various quantities are computed.  Quantiles (e.g., 

the 90th percentile) of the permutation distribution of these quantities are then used to 

identify differentially expressed genes. We focus on the methods for unpaired two-class 

comparisons; other experimental designs are briefly considered in the Discussion. 
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2.1 MPT-based methods    

MPT-based methods are based on the null hypothesis that the multivariate distribution of 

expression values for the null genes is the same in the two classes, with n arrays in one 

class and m arrays in the other class.  We describe the method here; detailed justification 

is given by Korn et al.[3] and software is available [14].  First, calculate the two-sample 

t-statistic test for comparing the two classes for each gene i, 

iii
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/1/1ˆ +
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    (1) 

where ix  and iy  are the means of the gene expression values (suitably normalized) for 

each class,  is the standard pooled variance estimator, and  and  are the available 

sample sizes in the two classes (which may be less than n and m because of missing data), 

all for gene i, where there are K genes in all.  Let , ,...,  be the normal-theory 

parametric p-values associated with these t-statistics and 

2ˆ iσ in im

1p 2p Kp

)()2()1( ... Kppp ≤≤≤  be the 

ordered p-values.  Consider B  permutations of the class labels among the arrays.  (Let 

B (n+m)!/(n!m!), the number of possible permutations, if B is not too large a number.  

Otherwise, let B=1000 random permutations.)  For each permutation, calculate the two-

sample t-statistic p-value for each of the genes using the permuted class labels and order 

the p-values from smallest to largest.  Let 

≡

jp ),1( < jp ),2( <...< jKp ),(  denote these ordered p-

values for the jth permutation, j=1, 2, ..., B.   Suppose we desire to identify a set of genes 

so that we could be 100( α−1 )% confident that there were at most u false discoveries in 

the set.  This can be accomplished by identifying all genes whose  is less than the 

(u+1)st smallest p-value in 100

ip

α  percent of the permutations [3]. That is, one identifies 
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all genes whose < ip )(αuMIN , where )(αuMIN  is the 100α th  percentile of { , 

, ..., }. 

1),1( +up

2),1( +up Bup ),1( +

 The MPT controls the number of false discoveries with 100(1-α )% confidence 

regardless of the underlying distribution of the data; see the Discussion.  However, 

)( γ≤FDPP  is not necessarily monotonic for nested gene lists  for 

increasing c.  That is, decreasing the significance level to identify differentially expressed 

genes does not mean decreasing the probability 

}|{ )( cpi i ≤

)( γ≤FDPP .  In attempting to use the 

MPT to control the FDP, there are two ways to proceed, a “top-down” approach and a 

“bottom-up” approach.  Consider a list of the genes ordered by their observed p-values 

with the most significant gene (smallest p-value) at the top of the list (Table 1).  Along 

with a column of these p-values, the next columns contain the values )(0 αMIN , 

)(1 αMIN , etc., where α =.2 in Table 1.  These column values represent the p-value cut-

offs for identifying genes with allowance for 0 errors, 1 error, etc.  In the top-down 

approach, we start at the top of the list and work down as long as the allowable number of 

false discoveries divided by the number of genes identified is less than γ :  If genes (1), 

(2), …., (i-1) have already been identified, we identify gene (i) if either )()( αγii MINp <  

or γγ )1( −> ii   (“automatic identification”), where x  denotes the greatest integer 

less than or equal to x.  In the hypothetical example given in Table 1, if we allowed 0 

false discoveries (with 80% confidence) then we would identify the first 11 genes; if we 

allowed one false discovery we would identify the first 13 genes.  To control the 

FDP<10%, proceeding from the top we sequentially can identify the first 9 genes by 

comparing the observed p-value with the fourth column .  (Bolded numbers )2(.0MIN
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identify which columns are to be used for comparison with the observed p-values.)  The 

10th gene is then an automatic identification.  (Heuristically, automatic identification is 

used because if we are 80% confident that there are no false discoveries in the first 9 

genes, then we are automatically 80% confident that there are <1 false discoveries in the 

first 10 genes.)   Genes 11 through 13 are identified because their p-values are less than 

 (bolded numbers), and the identification procedure stops. )2(.1MIN

 In the bottom-up approach, we start at the bottom of the list of genes ordered by 

increasing p-values, and work up the list as long as the allowable number of false 

discoveries divided by the number of genes identified is less than γ : genes (1), (2), …, 

(i) are identified where  i is the largest index such that )()( αγii MINp < .  Table 2 gives a 

hypothetical example where the bottom-up approach identifies 12 genes and the top-

down approach identifies 4 genes.  The bottom-up approach will practically always 

identify at least as many genes as the top-down approach.  The one possible exception is 

when the top-down procedure stops at an automatic rejection and the bottom-up 

procedure identifies one less gene. 

 The top-down approach was used previously [3]; consideration of the bottom-up 

approach is considered for the first time in this paper. 

 

2.2 SAM-based methods  

The SAM procedure is quite complex.  We present the main ideas here for the two-

sample problem and refer the reader to Tusher et al.[13]  and Chu et al. [15] for details.  

The score for gene i is the statistic  
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where iiii mns /1/1ˆ += σ  is the standard error of the numerator.  The score (2) is 

precisely a two-sample t-statistic (1) except for , which is calculated to minimize the 

coefficient of variation of the .  In calculating ,  SAM uses a grid of 100 cut-points 

to define windows of increasing values of ; see Chu et al. [15].  If there are K

0s

id 0s

is <100 

genes, then  is undefined and we take it to be zero in what follows.  We will also 

present results for a SAM-based method that sets =0 (“SAM without ”) for K>100.  

The score statistics are ordered for the K genes: 

0s

os os

)()2()1( ... Kddd ≤≤≤ .  The microarray 

data are permuted as in the MPT-based method, and the  are calculated for each 

permuted data set, denoted  for the jth permuted dataset. (The quantity  is not 

recalculated for each permuted data set, but  from the original data set is used 

throughout.)  Let 

)(id

jid ),( 0s

0s

)(id  be the mean of the  across the permuted data sets.  For 

example, 

jid ),(

)( Kd  is the mean across the permuted data sets of the largest scores.  For a fixed 

“tuning parameter”∆ , genes are identified as follows.  Find the smallest  such that  

and 

1i )( 1i
d

)( 1i
d  are positive and such that ∆>− )()( 11 ii dd .  Identify genes corresponding to 

 as “positive”.  Similarly, find the largest  such that  and )()1()( ,...,,
11 Kii ddd + 2i )( 2i

d )( 2i
d  are 

negative and such that ∆>− )()( 22 ii dd .  Identify genes corresponding to  

as “negative”.   

)()2()1( 2
,...,, iddd
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 To estimate the number of false positives for a given ∆ , SAM uses the following 

procedure.  First, define )( 1
)( iup dcut =∆  and )( 2

)( ilow dcut =∆ .  (The  ()(∆upcut )(∆lowcut ) 

remains undefined if there are no positive (negative) genes identified.)   For each 

permuted data set, let  be the number of genes with *c id > )(∆upcut  plus the number of 

genes with  id < )(∆lowcut .  Across the permutations, calculate the 90th percentile of the 

.  (The SAM software [15] also allows the use of the median of the , and the original 

description of SAM [13] used the mean of the .)  Multiply this 90

*c *c

*c th percentile by an 

estimate 0π̂  of the proportion of true null genes; see Chu et al. [15] for a description of 

0π̂ .  The product is taken as the estimate of the number of false positives.  The FDR is 

estimated by this estimate of false discoveries divided by the number of identified genes.  

The number of identified genes, estimated number of false positives, and estimated false 

discovery rate can be displayed for a grid of ∆  values.  The SAM software [15] chooses 

the grid to be 100 values; in our simulations we choose the 100 values to  correspond to 

the 100 percentiles (first percentile, second percentile, etc.) of the |)()(| idid − . 

 Although no probability claims are made for the method in Tusher et al. [13], it is 

of interest to assess the performance of  SAM for controlling the FDP by choosing a ∆  so 

that the estimated FDR from SAM is γ≤ . Let 10021 ... ∆≥≥∆≥∆   be the grid values of 

.  A top-down method of gene identification chooses the genes identified with , 

where i is the smallest index such that the estimated FDR from SAM associated with 

∆ i∆

i∆  

is γ≤  and the estimated FDR from SAM associated with 1+∆ i  is γ> .   A bottom-up 

method of gene identification chooses the genes identified with i∆ , where i is the largest 
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index such that the estimated FDR from SAM associated with i∆  is γ≤  and the 

estimated FDR from SAM associated with 1+∆ i  is γ> .  Note that the bottom-up method 

will always identify at least as many genes as the top-down method, because a smaller ∆  

identifies more genes. 

 The bottom-up approach is one of the approaches that has been suggested for 

SAM [16]; the top-down approach is considered for the first time in this paper. 

 

3. RESULTS 

We consider some of the properties of the MPT-based and SAM-based methods for 

controlling the FDP.  For the simulations, we generally assume that (a) there are the same 

number of observations in each group and no missing data ( nmn ii == ), (b) there are 

100, 1000, or 5000 genes (K=100, 1000 or 5000), (c) γ =10%, and (d) the observations 

are normally distributed.  In particular, the observations are normally distributed with, for 

gene i, the same variance for each group (denoted ) and mean shift between the 

groups being 

2
iσ

iµ .  The  are sampled from a distribution that is 0.25 + X/6.67, with X  

having a chi-squared distribution with 5 degrees of freedom.  The 0.25 term is used so 

that the variances will not be unrealistically close to zero, and the 6.67 factor is used so 

that the distribution has mean 1.  When in a simulation some genes are differentially 

expressed (

2
iσ

0≠iµ  ), we will express the differential expression in terms of the effect size 

( ii σµ / ) and specify that the distribution of the  is the same for differentially 

expressed and non-differentially expressed genes.  (With these specifications, the MPT-

based simulation results do not depend on the distribution of the .)   Unless otherwise 

2
iσ

2
iσ
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specified, the correlation between the genes is taken to be 0.  All simulations are based on 

10,000 repetitions.  The simulations considered are designed to demonstrate, in settings 

as simple as possible, the properties that are noted heuristically for the methods. 

 The first property to note is that using the SAM-based 90th percentile method, the 

probability that the FDP is larger than the specified γ  can be as large as approximately 

20%, not the 10% one might expect because the 90th percentile is used.  This doubling of 

what one might think is the error rate is because of the one-sided nature of SAM [18]. 

The simulation results given in Table 3 under the global null hypothesis and with n=30 

and  K=100 genes demonstrate this; the SAM-based method yields a FDP>γ (=10%) in 

17.3% of the simulations.  In all the simulations that follow we will therefore compare 

the 90th percentile SAM-based method with the 80% confidence MPT-based method. 

 As noted in section 2, the SAM software uses a grid of 100 ∆  values.  If, as 

typically is the case, there are more than 100 genes, there is the possibility of using a 

larger number of  values in the grid.  Increasing the number of ∆ ∆ ’s in the grid (by 

adding more ’s  to the existing ∆ ∆ ’s ) can increase the number of genes identified by the 

bottom-up approach; for the top-down approach it can result in either an increase or 

decrease in the number of identified genes.  Choosing K ∆’s as the maximum number is 

reasonable because choosing more will not result in any differences in the genes 

identified.  It is not clear how choosing 100 versus K ∆’s will affect the properties of the 

SAM-based method for controlling the FDP.  Table 4 presents simulation results 

evaluating the effect on the SAM-based method of using 100 ∆’s versus 1000 ’s when 

K=1000 and 12 genes are non-null and the rest are null.  With 1000 

∆

∆’s the average 

number of non-null genes identified is 12.0.  In fact, these 12 genes were identified in 
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>9994 of the 10,000 simulated datasets by all of the SAM-based methods with 1000 ∆’s.  

With  100 ’s, only 10.1 of the 12 non-null genes were identified on average, and in 

<1% of the simulated datasets were all 12 non-null genes identified.  In all the 

simulations that follow, we set the number of 

∆

∆’s equal to the number of genes, K.  We 

note in passing that the MPT-based method also identifies all 12 non-null genes for all 

the simulated datasets for this simulation.  

 As we mentioned above, the SAM-based methods would be expected to result in 

the FDP>γ  no more than 20% of the time when the 90th percentile method is used.  

Although we demonstrated this in Table 3 under the global null hypothesis, this does not 

have to be the case when there are some non-null genes as the following heuristic 

argument shows.  Suppose out of the K genes,  are highly differentially expressed and 

 are null.  The SAM-based method will practically always identify at least the  

highly differentially expressed genes.  Now consider the distribution of the score for the 

gene among the  null genes that is observed to have the most differential expression.  

This distribution will be the most extreme distribution from  null distributions.  

However, it will be compared to the reference permutation distribution of the ( +1) 

most extreme distribution out of K null distributions.  This permutation distribution will 

be less extreme than the observed distribution.  For example, the 9

+K

0K +K

0K

0K

+K

th most extreme 

distribution out of 100 null distributions is less extreme than the most extreme 

distribution out of 92 null distributions.  The end result is that the SAM-based method 

will reject null genes too often.  This is demonstrated in Table 5 where the error rates for 

the SAM-based method are 36.1% and 43.2% instead of being <20%.  With K=1000, the 

 13



SAM-based method performs better than with K=100 (see Table 5): using a reference 

distribution of the 9th largest out of 1000 for an actual distribution of the largest out of 

992 is not as large a problem as using a reference distribution of the 9th largest out of 100 

for an actual distribution of the largest out of 92.   In fact, the top-down SAM–based 

method has an acceptable error rate for this situation when K=1000.  However, when 

correlation is added to the genes, neither the top-down or bottom-up approach of the 

SAM-based method has acceptable error rates with K=1000 or 5000 (Table 6).  Changing 

the sample size from n=30 per group to n=50 per group or n=10 per group,  or making the 

sample size 30 in one group and 50 in the other does not improve the behavior of the 

SAM-based method, with the results being almost the same as the results given in Table 6 

(data not shown). 

 Tables 5 and 6 demonstrate a potential problem with the bottom-up approach for 

both the SAM-based and MPT-based methods and the top-down approach for the SAM-

based method; these approaches can violate the condition FDP<10% more than 20% of 

the time.  This simulation is meant to be a difficult test for the methods, for if even one 

null gene is identified in addition to the 8 non-null genes, the FDP will be greater than 

10%.   A less difficult test is offered by the scenario in which 100 genes are non-null 

(Table 7), as the methods will still satisfy FDP<10% even with 10 null genes identified.  

The SAM-based method depends on the signs (positive or negative) of the non-null genes 

(the MPT-based method does not), which is why two scenarios are considered in Table 7.  

The condition FDP<10% is violated less than 20% of the time in the Table 7 simulations. 

 With smaller sample sizes than n=30 per group, the advantages of pooling 

variability information (as SAM does) should be greater.  In these situations, one might 
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also consider pooling variability information for the MPT-based method also, e.g., using 

the method of Wright and Simon [18].  

 Although the focus of this paper is on controlling the FDP, the simulations can 

also be used to evaluate the FDR by averaging the FDP’s across the simulated datasets.  

A special case is the global null hypothesis (Table 3), for which the FDP can only be zero 

or one.  In this special case, the simulated FDR is the same as the simulated proportion of 

times the true FDP is greater than 10%, i.e., the proportions given in Table 3.  For the 

simulations in Tables 4-7, the simulated FDR is always less than 10% (data not shown).  

 

4. EXAMPLE 

Hedenfalk et al. [19] analyzed cDNA microarray profiles from breast cancer tumors from 

patients who had a family history of breast or ovarian cancer and whose tumors had 

BRCA1 mutations (7 patients) or BRCA2 mutations (8 tumors from 7 patients), as well 

as tumors from seven patients with sporadic cases of breast cancer.  We compare the 

BRCA1 tumors (n=7) to the non-BRCA1 tumors (n=15), and the BRCA2 tumor (n=8) to 

the non-BRCA2 tumors (n=14) for the 3226 genes that met quality control standards.  

The data are available online (http://linus.nci.nih.gov/~brb/book.html) and additionally 

described elsewhere [20].  We use a target FDP<10% and 80% confidence level of the 

MPT-based methods and the 90th percentile for the SAM-based methods with 3226 ∆ ’s.  

Because these permutation-based methods can yield variable results depending upon the 

random permutations, we performed each method eleven times (with 1000 permutations 

each time), and report here the median resulting number of identified genes for each 

method. 
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 The methods identified roughly similar numbers of genes for both comparisons 

(Table 8).  As both the MPT-based method and the SAM (without )-based method are 

using the same ordering of the genes (based on the two-sample t-statistic), the genes 

identified by these methods are subsets of each other.  For example, the list of the 56 

genes identified by top-down MPT-based method for the BRCA1 comparison is a subset 

of the list of 63 genes identified by bottom-up MPT-based method, which in turn is a 

subset the list of the 68 genes identified by the top-down or bottom-up SAM (without 

)-based method.  There is an overlap with the genes identified by the SAM-based 

method, but the overlap is not complete.  For example, of the 72 genes identified by 

SAM, 59 of these were also identified by SAM without . 

0s

0s

0s

 Based on the simulations presented in Tables 5 and 6, we would recommend 

using the gene lists identified by the top-down MPT-based method because this is the 

only method that guarantees the putative confidence level. 

 

5. DISCUSSION 

In our implementation of the MPT and SAM-based methods for controlling the FDP we 

have used parametric p-values from two-sample t-statistics to rank the genes for MPT-

based methods and parametric-type scores to rank the genes for the SAM-based methods.  

However, since the analyses are based on the multivariate permutation distribution and 

the p-values and scores are solely used to rank the genes in the observed and permuted 

datasets, the inference is, in fact, nonparametric provided that the multivariate 

distribution of the null gene values is the same in the two classes.  Nevertheless, one 

could consider using a nonparametric statistic to rank the genes, for example, the 
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Wilcoxon rank-sum test for an unpaired two class comparison [21].  Although we believe 

that generally the use of parametric statistics rather than nonparametric statistics will lead 

to more non-null genes being identified, the choice of what is the best ranking statistic to 

use in which applications is an area of further research.   

 It is straightforward to apply the MPT-based methods to designs other than the 

unpaired two-class comparisons thus far discussed.  One need only apply an appropriate 

statistical method that yields a p-value for each gene and permute the labels of the 

microarray profiles consistently with the experimental design.  For example, for a paired 

two-class comparison, one would use a paired t-statistic instead of the unpaired t-statistic, 

and one would permute the class labels within pairs (  possible permutations for 

pairs of samples).  For a regression problem where each microarray is associated with 

a single continuous covariate x, one could use a linear regression coefficient for the ith 

gene divided by its standard error instead of the unpaired t-statistic, and permute all the 

class labels among the x’s (n! possible permutations for samples).  For a C class 

problem with C=3, one would use a standard F statistic =

n2

n

n

)]3/(/[)]13/([ −− nSSSS wb   

from the analysis of variance, where  is the between-class sum of squares and  is 

the within-class sum of squares for the ith gene.  The microarray labels are permuted 

among the 3 classes (   possible permutations with  samples 

in the cth class, ).  Finally, one may not want to use p-values to rank the 

genes in more complex problems [22].   

bSS wSS

)!!!/()!( 321321 nnnnnn ++ cn

321 nnnn ++=

 With the SAM-based methods, the method of performing the permutations is 

identical to the method for the MPT-based methods.  However, the choice of the score for 
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ranking the genes is not canonical even for simple problems; see Chu et al. [15] for their 

recommended score choices for the paired two-class comparison and linear regression, 

and Tusher et al. [13] for a recommend score for a K class problem.  We note that for any 

reasonable score for the K class problem with K>3,  the score will be unidirectional.  That 

is, larger values of the score will represent larger class differences, and smaller values 

will represent smaller class differences.  This is distinct from the two-class problems 

where large or small values of the score represent class differences, and in distinction to 

the regression problem where large or small values of the score represent an association 

between the gene expression and covariate.  Because of this distinction, the properties of 

the SAM-based methods for FDP control may be quite different for the K class problem 

than for the other types of experimental design.  Therefore, the properties and results of 

the SAM-based methods discussed in this paper for the two class comparison may not be 

relevant for the K class problem.  This is not an issue for the MPT-based methods 

because they are always based on two-sided p-values. 

 In summary, if one desires to control with a specified confidence that the FDP is 

less than a specified value, then we recommend using the top-down MPT-based method.  
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Table 1:  Hypothetical data demonstrating identification of gene list of 13 genes 

controlling the FDP<10% (γ =.10) with 80% confidence  

Gene 

(i) 

Allowable

errors 

γi  

Observed 

p-value  )(ip

)2(.0MIN  

(allows 0 

errors) 

)2(.1MIN  

(allows 1 

error) 

… 

(1) 0 .0001 .0013 .0018 … 

(2) 0 .0001 .0013 .0018 … 

(3) 0 .0001 .0013 .0018 … 

(4) 0 .0002 .0013 .0018 … 

(5) 0 .0002 .0013 .0018 … 

(6) 0 .0005 .0013 .0018 … 

(7) 0 .0006 .0013 .0018 … 

(8) 0 .0007 .0013 .0018 … 

(9) 0 .0007 .0013 .0018 … 

(10) 1 .0012 .0013 .0018 … 

(11) 1 .0012 .0013 .0018 … 

(12) 1 .0016 .0013 .0018 … 

(13) 1 .0017 .0013 .0018 … 

(14) 1 .0025 .0013 .0018 … 

(15) 1 .0027 .0013 .0018 … 

…  … … … … 
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Table 2:  Hypothetical data demonstrating identification of gene list of 4 genes using top-

down approach or 12 genes using bottom-up approach controlling the FDP<10% with 

80% confidence  

Gene 

(i) 

Allowable

errors 

γi  

Observed 

p-value  )(ip

)2(.0MIN  

(allows 0 

errors) 

)2(.1MIN  

(allows 1 

error) 

… 

(1) 0 .0001 .0005 .0018 … 

(2) 0 .0001 .0005 .0018 … 

(3) 0 .0002 .0005 .0018 … 

(4) 0 .0004 .0005 .0018 … 

(5) 0 .0007 .0005 .0018 … 

(6) 0 .0008 .0005 .0018 … 

(7) 0 .0008 .0005 .0018 … 

(8) 0 .0010 .0005 .0018 … 

(9) 0 .0011 .0005 .0018 … 

(10) 1 .0012 .0005 .0018 … 

(11) 1 .0015 .0005 .0018 … 

(12) 1 .0017 .0005 .0018 … 

(13) 1 .0025 .0005 .0018 … 

(14) 1 .0027 .0005 .0018 … 

(15) 1 .0030 .0005 .0018 … 

…  … … … … 
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Table 3: Simulated proportion of times true FDP is greater than 10% using MPT-based 

methods (80% confidence) or SAM-based methods (90th percentile) for two-class 

problem under global null hypothesis (sample size n=30 per group; K=100 independently 

normally distributed genes) 

 

Top-down or  

bottom-up 

SAM MPT 

Top-down  .173 .199 

Bottom-up  .173 .199 

 

 25



 Table 4: Simulated proportion of times true FDP is greater than 10% and average 

number of non-null genes identified using MPT-based methods (80% confidence) or 

SAM-based methods (90th percentile) for two-class problem with 12 non-null genes 

(sample size n=30 per group; K=1000 independently normally distributed genes, 6 genes 

with effect size of 2 and 6 genes with effect size of  -2) 

 

 
Top-down 

or 
bottom-up 

SAM  
(SAM without  in parentheses) os

 100 ’s ∆ 1000 ∆ ’s 

MPT 

 FDP>10% # non-null 
identified 

FDP>10% # non-null 
identified 

FDP>10% # non-null 
identified 

Top-down .000 
(.000) 

10.1 
(10.1) 

.223  
(.229) 

12.0 
(12.0) 

.198 12.0 

Bottom-up .000 
(.000) 

10.1 
(10.1) 

.223 
(.229) 

12.0 
(12.0) 

.198 12.0 
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 Table 5: Simulated proportion of times true FDP is greater than 10% using MPT-based 

methods (80% confidence) or SAM-based methods (90th percentile) for two-class 

problem with 8 non-null genes (sample size n=30 per group; K=100 or K=1000  

independently normally distributed genes, 4 genes with mean shift of 2 and 4 genes with 

mean shift of  -2) 

 

Top-down or  

bottom-up 

Number of genes  SAM 

(SAM without  in 

parentheses) 

os

MPT 

Top-down  100 .361 .188 
Bottom-up  100 .432 .276 
Top-down  1000 .204 

(.212) 
.202 
 

Bottom-up  1000 .306 
(.312) 

.299 
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 Table 6: Simulated proportion of times true FDP is greater than 10% using MPT-based 

methods (80% confidence) or SAM-based methods (90th percentile) for two-class 

problem with 8 non-null genes (sample size n=30 per group; K=1000 or 5000;  clusters of 

50 genes with correlation =.5 within cluster, normally distributed genes, 4 genes with 

effect size of 2 and 4 genes with effect size of  -2) 

 

Top-down or  

bottom-up 

Number of genes SAM 

(SAM without  in 

parentheses) 

os

MPT 

Non-null genes all in one cluster 

Top-down  1000 .267 
(.268) 

.198 

Bottom-up  1000 .287 
(.289) 

.271 

Top-down  5000 .244 
(.238) 

.195 

Bottom-up  5000 .271 
(.268) 

.277 

Non-null genes all in different clusters 
Top-down 1000 .265 

(.268) 
.198 

Bottom-up 1000 .285 
(.289) 

.271 

Top-down 5000 .244 
(.238) 

.195 

Bottom-up 5000 .272 
(.268) 

.278 
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 Table 7: Simulated proportion of times true FDP is greater than 10% and average 

number of non-null genes identified using MPT-based methods (80% confidence) or 

SAM-based methods (90th percentile) for two-class problem with 100 non-null genes 

(sample size n=30 per group; K=1000 independently normally distributed genes) 

 

 
Top-down 

or 
bottom-up 

SAM 
(SAM without  in parentheses) os

 50 genes shift=+ iσ  
50 genes shift=- iσ  

90 genes shift=+ iσ  
10 genes shift=- iσ  

MPT 
 
 

100 genes |shift|= iσ  

 FDP>10% # non-null 
identified 

FDP>10% # non-null 
identified 

FDP>10% # non-null 
identified 

Top-down .128 
(.149) 

84.5 
(85.6) 

.096 
(.114) 

85.9 
(86.6) 

.122 85.5 

Bottom-up .135 
(.159) 

84.8 
(85.7) 

.103 
(.123) 

86.0 
(86.8) 

.129 85.7 
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Table 8:  Number of genes identified for Hedenfalk et al. [19] data for two comparisons using various multivariate permutation based 
methods  
 
 
 
Method Top-down or bottom-up BRCA1 vs. non-BRCA1 BRCA2 vs. non-BRCA2 

top-down 56 67 MPT (80% confidence) 
bottom-up   63 82
top-down   68 52SAM without  (90th 

percentile,  3226 ∆ ’s) 
0s

bottom-up   68 52
top-down   72 70SAM (90th percentile,  

∆3226 ’s) bottom-up   72 77
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