SUPPLEMENTAL MATERIALS

APPENDIX A

SAMPLE SIZE CALCULATION

The presentation below is for the untargeted design. The same methodology applies to the targeted design.

The means and variances of random variables \(X \) and \(Y \) which represent respectively the control and the treatment outcomes are calculated as follows by using the formula established by Pearson [1] for the calculation of mixture means and variances:

\[
E(X) = \gamma \mu_0 + (1 - \gamma) \mu_1
\]

\[
E(Y) = \gamma \mu_{0T} + (1 - \gamma) \mu_{1T}
\]

\[
V(X) \equiv \sigma^2 = \gamma \sigma_0^2 + (1 - \gamma) \sigma_1^2 + \gamma (1 - \gamma) \left(\mu_1 - \mu_0 \right)^2 = \sigma^2 + \gamma (1 - \gamma) \left(\mu_1 - \mu_0 \right)^2
\]

\[
V(Y) \equiv \sigma^2 = \gamma \sigma_0^2 + (1 - \gamma) \sigma_1^2 + \gamma (1 - \gamma) \left(\mu_{1T} - \mu_{0T} \right)^2 = \sigma^2 + \gamma (1 - \gamma) \left(\mu_{1T} - \mu_{0T} \right)^2
\]

where \(\gamma \) is the frequency of R- patients in the population, \(\sigma^2 \) is the common response variance, \(\mu_0 \) is the mean response for R- patients in the control group, \(\mu_1 \) is the mean response for R+ patients in the control group, \(\mu_{0T} \) is the mean response for R- patients in the treatment group, and \(\mu_{1T} \) is that for R+ patients in the treatment group.
1. PARAMETRIC CASE

The difference of means (effect size) between the control and the treatment responses, which represents the treatment effect is:

\[
d = E(Y) - E(X) = \gamma (\mu_{0T} - \mu_0) + (1 - \gamma)(\mu_{1T} - \mu_1) = \gamma \delta + (1 - \gamma)\Delta \quad \text{where} \quad (\mu_{0T} - \mu_0) = \delta \quad \text{and} \quad (\mu_{1T} - \mu_1) = \Delta
\]

Note: \(\delta\) is the potential benefit (depending on the scenario) for R- patients and \(\Delta\) is the benefit for R+ patients.

If we denote by \(\overline{X}\) and \(\overline{Y}\) the random variables which describe the estimated mean responses for the control and the treatment groups respectively, \(m_\varepsilon = E(X)\) and \(m_1 = E(Y)\) the theoretical means, then the usual Central Limit Theorem implies that \(\overline{X} \sim N(m_\varepsilon, \sigma_\varepsilon^2 / n)\), \(\overline{Y} \sim N(m_1, \sigma_1^2 / n)\) where \(n\) is the size for control group assumed to be the same for that of treatment group.

Thus for given type I error \(\alpha\), the null hypothesis \(H_0\) of no difference in means between control and treatment groups is rejected if

\[
\sqrt{n} \left(\overline{X} - \overline{Y}\right) / \sqrt{\sigma_\varepsilon^2 + \sigma_1^2} > Z_{1-\alpha/2}
\]

where \(z_{1-\alpha/2}\) is the standard normal distribution \(\alpha / 2\) percentile.

For a given power \(1-\beta\), the calculation of the required sample size without screening is done by using classical method established for normal distributions [2, 3], as follows:

\[
P \left[\frac{\sqrt{n} (\overline{X} - \overline{Y}) + (\gamma \delta + (1 - \gamma)\Delta) \sqrt{n}}{\sqrt{\sigma_\varepsilon^2 + \sigma_1^2}} > Z_{1-\alpha/2} \right] = 1 - \beta = 1 - \Phi(-Z_{1-\beta})
\]

where \(\Phi\) is the cumulative distribution function of the standard normal distribution. So

\[
1 - \Phi \left(Z_{1-\alpha/2} - \frac{(\gamma \delta + (1 - \gamma)\Delta) \sqrt{n}}{\sqrt{\sigma_\varepsilon^2 + \sigma_1^2}} \right) = 1 - \Phi(-Z_{1-\beta})
\]

1
Thus \[Z_{1-\alpha/2} - \frac{(\gamma\delta + (1-\gamma)\Delta)\sqrt{n}}{\sqrt{\sigma_c^2 + \sigma_t^2}} = -Z_{1-\beta} \]

Substituting in the values for \(\sigma_c^2 \) and \(\sigma_t^2 \) and simplifying gives equation (2) of the manuscript:

\[
n = \frac{(Z_{1-\alpha/2} + Z_{1-\beta})^2}{[\gamma(\mu_{0T} - \mu_0) + (1-\gamma)(\mu_T - \mu_t)]^2 / \left(2\sigma^2 + \gamma(1-\gamma)[(\mu_T - \mu_0)^2 + (\mu_T - \mu_{0T})^2]\right)}
\]

We can obtain equation (3) of the manuscript by setting \(\gamma=0 \), namely:

\[
n_i = \frac{(Z_{1-\alpha/2} + Z_{1-\beta})^2 2\sigma^2}{(\mu_T - \mu_t)^2}
\]

The ratio of randomized patients (equation noted (4) in the manuscript) is:

\[
n = \frac{\left(2\sigma^2 + \gamma(1-\gamma)[(\mu_T - \mu_0)^2 + (\mu_T - \mu_{0T})^2]\right)(\mu_T - \mu_t)}{\left[\gamma(\mu_{0T} - \mu_0) + (1-\gamma)(\mu_T - \mu_t)^2\right] 2\sigma^2}
\]

\[
n_i = \frac{\left[1 + \frac{\gamma(1-\gamma)}{2\sigma^2}\frac{(\mu_T - \mu_0)^2 + (\mu_T - \mu_{0T})^2}{\gamma(\mu_{0T} - \mu_0) + (1-\gamma)(\mu_T - \mu_t)^2}\right]}{\left[1 - \gamma + \frac{\gamma((\mu_{0T} - \mu_0)/(\mu_T - \mu_t))^2}{(\mu_{0T} - \mu_0)/(\mu_T - \mu_t))^2}\right]}
\]

\[
= \frac{\left[1 + \frac{\gamma(1-\gamma)}{2\sigma^2}\frac{(\mu_T - \mu_0)^2 + (\mu_T - \mu_{0T})^2}{\gamma(\mu_{0T} - \mu_0) + (1-\gamma)(\mu_T - \mu_t)^2}\right]}{\left[1 - \gamma - ((\mu_{0T} - \mu_0)/(\mu_T - \mu_t))^2\right]}
\]

2. NON PARAMETRIC CASE

In the non parametric case, the standard formula [4] for power calculation for the two-sample Wilcoxon test is as follows:

\[
\prod(F_x, F_y) = 1 - \Phi \left(\frac{0.5n^2 + Z_{1-\alpha/2}\sqrt{n^2(2n+1)/12 - 0.5n^2p_1}}{\sqrt{\text{var}(W_{xy})}} \right)
\]

where the different quantities in the equation are described in the manuscript.
If the desired power is 1-β, then

\[1 - \Phi(-Z_{1-\beta}) = 1 - \Phi \left(\frac{[0.5n^2 + Z_{1-\alpha/2} \sqrt{n^3 (2n+1)/12} - 0.5 - n^2 \alpha]}{\sqrt{\text{var}(W_{XY})}} \right) \]

\[= \Phi \left(\frac{[n^2(p_1 - 0.5) - Z_{1-\alpha/2} \sqrt{n^3 (2n+1)/12}]}{\sqrt{\text{var}(W_{XY})}} \right) \]

if the correction continuity term 0.5 is ignored.

Given the type I error \(\alpha \) and the power 1-\(\beta \), the sample size is calculated by solving the equation

\[1 - \beta = 1 - \Phi(-Z_{1-\beta}) = 1 - \Phi \left(\frac{[0.5n^2 + Z_{1-\alpha/2} \sqrt{n^3 / 6 - n^2 \alpha}]}{\sqrt{\text{var}(W_{XY})}} \right) \]

where \(2n+1 \) is replaced by \(2n \).

Thus \(n \) is simplified in the numerator and the denominator and the variance of \(W_{XY} \) (equation (7) in the manuscript) is replaced by its value and so

\[1 - \Phi(-Z_{1-\beta}) = 1 - \Phi \left(\frac{[0.5n + Z_{1-\alpha/2} \sqrt{n / 6} - n \alpha]}{\sqrt{p_1(1-p_1) + (n-1)(p_2 + p_3 - 2p_1^2)}} \right) \]

Thus,

\[-Z_{1-\beta} = \frac{[n(0.5 - p_1) + Z_{1-\alpha/2} \sqrt{n / 6}]}{\sqrt{p_1(1-p_1) + (n-1)(p_2 + p_3 - 2p_1^2)}} \]

\[Z_{1-\beta}^2 (p_1(1-p_1) + (n-1)(p_2 + p_3 - 2p_1^2)) = n^2(0.5 - p_1)^2 + 2(0.5 - p_1)nZ_{1-\alpha/2} \sqrt{n / 6} + (n / 6)Z_{1-\alpha/2}^2 \]

This leads to the following equation which must be satisfied by \(n \)

\[(0.5 - p_1)^2 n^2 + 2(0.5 - p_1)Z_{1-\alpha/2} n\sqrt{n / 6} + ((Z_{1-\alpha/2}^2 / 6) - (p_2 + p_3 - 2p_1^2)Z_{1-\beta}^2 - Z_{1-\beta}^2 p_1(1-p_1) = 0 \]

It is solved numerically with Matlab.

APPENDIX B

MONTE CARLO SIMULATION
The probabilities p_1, p_2, p_3 in manuscript equations (6) and (7) are calculated as follows for the untargeted design with the matlab code:

$$X_a = \mu_0 I_{n_{\text{max}}} + \sigma_0 \text{randn}(n_{\text{max}})$$
$$X_b = \mu_1 I_{n_{\text{max}}} + \sigma_1 \text{randn}(n_{\text{max}})$$
$$V = \text{rand}(n_{\text{max}})$$
$$W = (V < \gamma)$$

The observed responses for the control group are
$$X = W .* X_a + (1 - W) .* X_b$$

Similarly for the treated group
$$Y_a = \mu_0 I_{n_{\text{max}}} + \sigma_0 \text{randn}(n_{\text{max}})$$
$$Y_b = \mu_1 I_{n_{\text{max}}} + \sigma_1 \text{randn}(n_{\text{max}})$$
$$V = \text{rand}(n_{\text{max}})$$
$$W = (V < \gamma)$$

The observed responses for the control group are
$$Y = W .* Y_a + (1 - W) .* Y_b$$

X_1 is generated independently but identically as X, Y_1 is generated independently but identically as Y.

$$p_1 = \text{sum} \left(\text{sum} (X < Y) \right) / n_{\text{max}}^2$$
$$p_2 = \text{sum} \left(\text{sum} ((X < Y) \& (X < Y_1)) \right) / n_{\text{max}}^2$$
$$p_3 = \text{sum} \left(\text{sum} ((X < Y) \& (X_1 < Y)) \right) / n_{\text{max}}^2$$

where $I_{n_{\text{max}}}$ is the $n_{\text{max}} \times n_{\text{max}}$ matrix with each element equal to 1, $\text{rand}(n_{\text{max}})$ is a $n_{\text{max}} \times n_{\text{max}}$ matrix containing uniform(0,1) random numbers, $\text{randn}(n_{\text{max}})$ is a $n_{\text{max}} \times n_{\text{max}}$ matrix containing standard normal random numbers. $\text{sum} \text{sum}$ is the sum of all matrix elements. W is a boolean matrix indicating whether entries come from R- or R+. The symbol .* denotes the matrix multiplication element by element. The simulation is conducted with $n_{\text{max}}=1000$ which provides 10^6 replicates.

REFERENCES

