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SUPPLEMENTAL MATERIALS

APPENDIX A
SAMPLE SIZE CALCULATION

The presentation below is for the untargeted design. The same methodology applies to the targeted
design.

The means and variances of random variables X and Y which represent respectively the control
and the treatment outcomes are calculated as follows by using the formula established by Pearson

[1] for the calculation of mixture means and variances:
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where 7 is the frequency of R- patients in the population, o is the common response variance, g,
is the mean response for R- patients in the control group, g is the mean response for R+ patients

in the control group, 4,; is the mean response for R- patients in the treatment group, and z4; is

that for R+ patients in the treatment group.



1. PARAMETRIC CASE

The difference of means (effect size) between the control and the treatment responses, which
represents the treatment effect is:
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Note: 9 is the potential benefit (depending of the scenario) for R- patients and A is the benefit for
R+ patients.

If we denote by X and Y the random variables which describe the estimated mean responses for

the control and the treatment groups respectively, m, = E(X) and m, = E(Y) the theoretical
means, then the usual Central Limit Theorem implies that X ~ N(mc,of/ n), Y~ N(m,,al/n)
where n is the size for control group assumed to be the same for that of treatment group.

Thus for given type I error o, the null hypothesis H, of no difference in means between control

and treatment groups is rejected if
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where Z,__, is the standard normal distribution « /2 percentile.
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For a given power 1-B, the calculation of the required sample size without screening is done by

using classical method established for normal distributions [2, 3], as follows:
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where @ is the cumulative distribution function of the standard normal distribution. So
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Substituting in the values for o, and o7 and simplifying gives equation (2) of the manuscript:
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We can obtain equation (3) of the manuscript by setting y=0, namely:
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The ratio of randomized patients (equation noted (4 ) in the manuscript) is:
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2. NON PARAMETRIC CASE

In the non parametric case, the standard formula [4] for power calculation for the two-sample
Wilcoxon test is as follows:
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equation are described in the manuscript.

where the different quantities in the



If the desired power is 1-3, then
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if the correction continuity term 0.5 is ignored.
Given the type I error o and the power 1-B, the sample size is calculated by solving the equation
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where 2n+1 is replaced by 2n.

Thus n is simplified in the numerator and the denominator and the variance of W,, (equation (7) in
the manuscript) is replaced by its value and so

[0.5n +Z,_,,Nn /6-n p,] J

P (1= p)+(N=1)(p, + p, —2p?)

1-®(-Z,_)) l—d)[
Thus,

= [n(0.5— p1)+Zl_a/2\/n/6]
7 Im=p)+(n=1)(p, + p,—2p))

—Z

2

le—ﬁ’( P, (1 - p1) + (n - 1)( P, +P;— 2 p12 )) = n2(0-5 - p1)2 + 2(0-5 - pl)nzlﬂz/Z Vn/6+ (n/6)Zl,a/2
This leads to the following equation which must be satisfied by n
(0.5-p,)*N* +2(0.5-p)Z,_,,,NN/ 6 +((Z] ., /6)— (P, + P, —2P))Z] , — Z} ,p,(1= p,) =0

It is solved numerically with Matlab.

APPENDIX B

MONTE CARLO SIMULATION



The probabilities p,, p,, P, in manuscript equations (6) and (7) are calculated as follows for the
untargeted design with the matlab code:

Xy = ol e + 0prandn(n max)
Xy = 1,00 + O randn(n max)
V =rand(nmax)

W =(V <)

The observed responses for the control group are
X=W.*X,+(1-W).*X,

Similarly for the treated group
Y, = tor e + Oprandn(nmax)

Y, = i1 e + O Fandn(nmax)
V =rand(nmax)
W=V <)

The observed responses for the control group are
Y =W.*Y, +(1-W).*Y,

X, is generated independently but identically as X , Y is generated independently but identically

as Y.

p, = sum(sum(X <Y))/nmax’
p,=sum(sum((X <Y)& (X <Y,)))/nmax’

p,=sum(sum((X <Y)& (X, <Y)))/nmax’

where |, is the nmax by nmax matrix with each element equal to 1, rand(nmax) is @ nmax by

Nmax matrix containing uniform(0,1) random numbers, randn(nmax) is a Nmax by Nmax matrix
containing standard normal random numbers. sum sum is the sum of all matrix elements. W is a
boolean matrix indicating whether entries come from R- or R+. The symbol .* denotes the matrix
multiplication element by element. The simulation is conducted with nmax=1000 which provides
10° replicates.
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