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Abstract

We consider the problem of designing a study to develop a predic-
tive classifier from high dimensional data. A common study design is to
split the sample into a training set and an independent test set, where
the former is used to develop the classifier and the latter to evaluate its
performance. In this paper we address the question of what proportion
of the samples should be devoted to the training set. How does this pro-
portion impact the mean squared error (MSE) of the prediction accuracy
estimate? We develop a non-parametric algorithm for determining an
optimal splitting proportion that can be applied with a specific dataset.
We also perform a broad simulation study for the purpose of better un-
derstanding the factors that determine the best split proportions and to
develop guidelines for splitting strategies that are robust and close to op-
timal under a wide variety of conditions.

These methods are based on a decomposition of the MSE into three
intuitive component parts. By applying these approaches to a number of
synthetic and real microarray datasets we show that the optimal propor-
tion depends on the overall number of samples available and the degree of
differential expression between the classes. Over a wide range of settings,
it was found that %—to—é training-to-test allocation performs nearly as well
as the optimal split, and is more robust than %-to—% allocation. A resam-
pling approach that can be applied to any dataset, using any predictor
development method, to determine the best split is presented.

1 Introduction

The split sample approach is a widely used study design in high dimensional
settings. This design divides the collection into a training set and a test set as
a means of estimating classification accuracy. A classifier is developed on the



training set and applied to each sample in the test set. In practice, statistical
prediction models have often been developed without separating the data used
for model development from the data used for estimation of prediction accu-
racy (Dupuy and Simon, 2007). When the number of candidate predictors (p)
is larger than the number of cases as in microarray data, such separation is
essential to avoid large bias in estimation of prediction accuracy (Simon et al.,
2003). This paper addresses the question of how to optimally split a sample
into a training set and a test set for a high dimensional gene expression study,
that is, how many samples to allocate to each group.

Two approaches to evaluating splits of the data are examined. The first
approach is based on simulations designed to understand qualitatively the rela-
tionships among dataset characteristics and optimal split proportions. We use
these results to develop robust general guidelines for allocation of the data to
training and test sets. Our second approach involves development of a non-
parametric method that does not rely on distributional assumptions and can
be applied directly to any existing dataset without stipulating any parameter
values. The nonparametric method can be used with any predictor development
method (e.g., nearest neighbor, support vector machine).

This paper addresses the situation in which the accuracy of a predictor will
be assessed by its performance on a separate test set. An alternative approach is
to apply resampling-based methods to the whole dataset. Because re-sampling
strategies have been commonly mis-used, often resulting in highly biased es-
timates of prediction accuracy (Simon et al., 2003; Ambroise and McLachlan,
2002), many journals and reviewers mis-trust cross-validation and require vali-
dation on a sample not used for model development. Another advantage of the
split sample method, particularly in large collaborative studies in which multi-
ple groups will be developing predictors, is that the test set can be kept under
“lock and key” by a honest broker (Shedden et al., 2008).

The question addressed in this paper has not to our knowledge been ad-
dressed before. Sample splitting has been addressed in other contexts, such as
comparing different k-fold cross validations (Molinaro et al., 2005) or developing
hold out estimation theory (Devroye et al., 1996) and bounds on Bayes error
(Fukunaga, 1990). Mukherjee et al. (2003), Fu et al. (2005). Dobbin and Si-
mon (2007) developed methods for planning the size of a training set, but these
methods do not address the allocation of cases in an existing dataset to training
and test portions. Since many gene expression based classifiers are developed
retrospectively, there is often little control of the sample size.

In Section 2 we describe the parametric modeling approach used to generate
general recommendations and the nonparametric approach that can be applied
to specific datasets. In Section 3, we present the results of application of these
methods to synthetic and real world datasets. In Section 4, conclusions and
recommendations for dividing a sample into a training set and test set are
discussed.



2 Methods

The classifier taken forward from a split-sample study is often the one developed
on the full dataset. This full-dataset classifier comes from combining the training
and test sets together. The full-dataset classifier has an unknown accuracy which
is estimated by applying the classifier derived on the training set to the test set.
The optimal split will then be the one that minimizes the mean squared error
(MSE) with respect to this full-dataset classifier. The MSE naturally penalizes
for bias (from using a training set smaller than n) and variance.

In the supplemental material, it is shown that under mild assumptions this
MSE is proportional to

MSEx A+V + B. (1)

Here we have symbols A, V and B to depict the decomposition, and these are
used throughout the discussion below. Here is a description of each term in
Equation (1). Diagram 1 shows the breakdown visually.

A=Accuracy Variance Term: The first term in Equation (1) reflects the
variance in the true accuracy of a classifier developed on a training set T
selected from the full dataset S. Not all training sets 7 C S will result in
predictors with exactly the same accuracy. The variation in actual (true)
accuracy among all these different predictors is the A term.

V=Binomial Variance Term: The second term in Equation (1) is the vari-
ance in the estimated accuracy that results from applying the classifier to
the test set. This is a binomial variance because the classifier developed
for a specific training set has some fixed true accuracy (success proba-
bility), and there are n — t independent samples represented in the test
set.

B=Squared Bias Term: The third term in Equation (1) is the squared bias
that results from using a classifier that was developed on ¢ training samples
to estimate the accuracy of a classifier which is developed on n samples.

2.1 Model-based simulations for high dimensional expres-
sion profiles

With each sample is associated a p-dimensional vector of log gene expression
measurements, say x, which is assumed to follow the multivariate normal distri-
bution with mean vector p; for class 1 and us for class 2 and common covariance
matrix X. Of the p genes, m are assumed differentially expressed with difference
in mean expression levels between classes of 26 and the remaining p-m genes
are not differentially expressed. Extensive simulations under a variety of con-
ditions indicated that the components of MSE depended on the separation of
the classes with regard to gene expression and this is determined by the num-
ber of diffeentially expressed genes, the degree of differential expression and the



correlation among the differentially expressed genes. In general none of these
quantities are known before analyzing the data. However, we have attempted to
utilize extensive simulation results to understand the relationship between sam-
ple size, class separation and splitting effectiveness in order to provide robust
general recommendations.

Our simulations use the compound covariate predictor (Radmacher et al.,
2002), with gene selection performed using the optimal selection cutpoint al-
gorithm described in Dobbin and Simon (2007). We adjusted the method in
Dobbin and Simon (2007) for predicting an optimal significance level for gene
selection to avoid assuming that the prevalence of the classes is known.

The estimates of MSE as a function of splitting proportion are estimated for
each simulated dataset in the following way:

1. Given 26 /0 standardized fold change, m informative genes, dimension p,
n samples available, and a covariance matrix 3, generate a dataset S from
the probability model. Randomly select R training sets of size t. A grid
of t values are evaluated for each total sample size n.

2. For each t above, calculate the optimal significance level cutoff @ to use
for gene selection (Dobbin and Simon, 2007).

3. Using the optimal « levels to select genes from pooled variance t-tests,
develop compound covariate predictors (CCP) (Radmacher et al., 2002)
for each training set.

4. For each classifier developed on a training set of size t, apply the classifier
to the corresponding test set of size n-t and estimate the classification
accuracy. Average estimates over the R replicates to obtain the mean
predicted accuracy estimate.

5. Develop a CCP classifier on the full dataset S of n cases. Using the param-
eters used to generate S, the true accuracy of the classifier developed on
the full dataset was computed from theory (see supplemental materials).

2.2 A method for determining the optimal sample split for
a particular dataset, which utilizes a nonparametric
data re-sampling approach

The nonparametric bootstrap method of estimating standard error (Efron and
Tibshirani, 1993) was used to estimate the variance of the performance of a
predictor developed on a training set of size ¢t and applied to a test set of size
n — t. In our previous notation, this was A + V. Splitting was performed prior
to resampling in order to avoid overlap between the training and test sets.

In order to estimate the squared bias term B we considered adopting learn-
ing curve methods (Duda et al., Section 9.6.7, 2001), as used previously in
Mukherjee et al. (2003). Briefly, the 2003 paper uses a parametric nonlinear
least squares regression approach that fits a learning curve model to datapoints



of the plot with training set size ¢ on the x-axis and the estimated error rate
on the y-axis. Fitting a learning curve of the form e = a + b/t® where e is the
expected error and ¢ is the training set size (and a > 0), provides an estimate
of the asymptotic error rate (a), i.e., when t = co. However, we found the para-
metric learning curve model for the data often did not fit our simulated or real
data adequately. Also, estimation of the squared bias term B does not require
estimation of the asymptotic error (a), but only the mean error rate for limited
training sizes t < m. So instead, we use a nonparametric smoothing spline to
fit the plot with the training sample size ¢ on the x-axis and the average error
rate on the y-axis. When the learning curve raw data were not monotone (usu-
ally because the error rate had stopped decreasing significantly relative to the
noise level present), then we used isotonic regression to force monotonicity of
the fitted curve.
The squared bias term is estimated as follows:

1. For fixed n, and for ¢t = 10, 20, ...,n — 10, randomly divide the dataset into
a training set and a test set 1,000 times.

2. For each t, develop a classifier on each of the 1,000 training sets and apply
the classifier to the corresponding test set. For each ¢, calculate the mean
error rate w of these 1,000 classifiers.

3. Fit a smoothing spline or isotonic regression of w on ¢ using spline case
weights 1/t. Adjust degrees of freedom visually based on the smoothing
spline plot.

4. For t = 10,20, ...,n, calculate w(t), the fit-value from the spline or isotonic
regression of the error rate on t.

5. Estimate the squared bias using [ (n) — w(t)]°.

2.3 Software and application to microarray datasets

Computations were carried out in C++ using a Borland 5 compiler and Op-
tivec 5.0 vector and matrix libraries, and R version 2.6.1 (including R ”stats”
package for smooth.spline and isoreg functions). Gene expression data were ob-
tained from the BRB ArrayTools Data Archive for Human Cancer Gene expres-
sion (url: http://linus.nci.nih.gov/BRB-ArrayTools.html), except for (Golub
et al., 1999) data which was retrieved from the Broad Institute website (url:
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi). Data were normalized
using MAS 5.0 and median centering each array using either R or BRB Array-
Tools (developed by Dr. Richard Simon).

3 Results

We applied the parametric method to high dimensional multivariate normal
datasets, while varying the parameter settings and the class prevalences. Results



are shown in Tables 1 and S1 (supplement). We considered total samples of size
n = 200, n = 100 and n = 50. For example, when m = 50 genes are informative
and n = 200, then the optimal number of samples for the training set (reading
across the first row of Table 1) is 170, 70 or more, 30 or more, and 20 or more for
effect sizes of 0.5, 1.0, 1.5 and 2.0, respectively. The “or more” in the last three
training set sizes indicate that training set sizes anywhere from the specified
size up to 190 result in practically equivalent mean squared error.

Several features are apparent in Table 1: (i) when the achievable accuracy
is not much greater than 50%, the optimal split allocates the vast majority of
samples to the test set. In this circumstance, no good classifier is possible so
additional samples allocated to the training set are wasted and detract from
lowering the variance of estimation in the test set; (ii) when the gene expres-
sion profiles of the two classes are widely separated, e.g., with a large number
of differentially expressed genes and large effect sizes, small training sets are
adequate to develop highly effective classifiers. The MSE is flat in this circum-
stance because the binomial variance is small when the accuracy is close to 1
and hence neither large training set nor large test sets are needed; (iii) when the
gene expression profiles are moderately separated for the two classes and the
sample size is 100 cases or less, the optimal split has most of the cases allocated
to the training set.

Table S1 in the Supplement shows the results when the prevalence is unbal-
anced, namely, 2/3 from one class and 1/3 from the other class. The results
for this imbalanced prevalence setting are very similar to the equal prevalence
setting. This suggests that the same general optimal splits apply for a range of
class prevalence (33% to 67%).

The relative sizes of the three terms contributing to the mean squared error of
Equation (1) for the scenarios of Table 1 and S1 are shown in the Supplementary
material. An example is shown in Figure 2. Generally, the A term tends to be
relatively small across the range of sample sizes.

The squared bias term B tends to be relatively large for small sample sizes
and to dominate the other terms. When development of a good classifier is
possible, the actual accuracy of classifiers developed on the training set may
initially increase rapidly as the training set size increases. As the sample size
increases, the bias term B decreases until no longer dominating. This is because
the accuracy of the classifier improves as the size of the training set increases
and approaches the maximum accuracy possible for the problem at hand. The
rate of decrease of the squared bias term B will depend somewhat on the type
of classifier employed and on the separation of the classes. When the classes are
not different with regard to gene expression, learning is not possible and B will
equal zero for all training set sizes.

The binomial variance term V is generally relatively small unless the test set
becomes very small at which point it often dominates. The only exceptions to
this general rule are in cases where the prediction accuracy nears 1 for ¢ < n,
in which case this V term remains near zero even as the test set size becomes
small.

Figure 3 is a comparison of the two most common rules of thumb for splitting



a sample into a training set and a test set. The figure compares 50% allotment to
the training set versus 67% allotment to the training set for the equal prevalence
case. Each scenario represented in Table 1 is also present in Figure 3. The x-
axis is the average accuracy (%) for classifiers developed from the full dataset
of n samples. The y-axis is the excess error from using a non-optimal split. The
discussion is organized around the full dataset accuracy:

e When the full dataset size accuracy is very close to 1, both the 50% al-
lotment and the 67% allotment to the training set result in similar excess
€error.

e When the full dataset size accuracy is moderate, say between 60% and
99%, then in several cases, assigning 67% to the training set results in no-
ticeably lower excess error, while in other cases the two allotment schemes
are roughly equivalent.

e Finally, and not surprisingly, when the full dataset size accuracy is below
60% (shaded area on graph), then allotment of 50% to the training set is
preferable.

In sum, this graph shows that allotment of 2/3rds to the training set is more
robust than allotment of 1/2 to the training set.

The nonparametric method was applied to simulated datasets and the MSE
estimates compared to the parametric approach. Agreement between the two
was very good (see Supplement Section 4 for figure).

Table 2 shows the results of the application of the nonparametric method to
several real-world datasets.

Note that the rightmost two columns show the excess error when 1/2 and
when 2/3rds are allotted to the training set. For the Rosenwald et al. (2002)
dataset of diffuse large B-cell lymphoma, we estimated the optimal split for dis-
tinguishing between germinal-center B-cell-like lymphoma from all other types.
For this dataset of n = 240 patient samples, the optimal split was 150 : 90,
with about two-thirds of the samples devoted to the training set. The excess
error (root mean square error difference, RMSD) from the 2/3rds to training
set rule of thumb is 0.001; as a comparison, the RMSD for a simple binomial
random variable (with p=0.96) between a sample size of 236 and 240 is also
0.001. Hence, the excess error at ¢ = 2n/3 is very small.

For the Boer et al. (2001) dataset, the optimal split was 80 for the training
set and 72 for the test set, so that 53% were used to train the classifier to
distinguish normal kidney from renal cell carcinoma. The dramatic difference in
gene expression between cancer and normal tissues meant that a smaller training
set size was needed to develop a highly accurate classifier (see Supplement for
figure). As a result, the 1/2 to training set rule of thumb is a little better than
the 2/3rds to training split. That being said, the excess error when 2/3rds ares
used for training is only 0.004. For comparison, the RMSD of 0.004 is similar to
the RMSD resulting from increasing the sample size from 142 to 152 in simple
binomial sampling (when p = 0.98).



For the Golub et al. (1999) dataset, the optimal split was 40 for the training
set and 32 for the test set, or 56% for the training to distinguish acute lym-
phoblastic leukemia from acute myologenous leukemia. This is another example
of two classes with dramatically different expression profiles. Like the Rosen-
wald dataset, the 2/3rds to training set rule resulted in smaller excesss error
than the 1/2 rule.

To distinguish oligodendroglioma from glioblastoma in the the Sun et al.
(2006) dataset required 40 for the training set and 91 for the test set, or 31%
for the training set. This optimal training sample size was somewhat smaller
than expected. This appeared to be due to the accuracy leveling off after ¢ = 40
training samples, while the variance terms increased monotonely for ¢ > 40. The
multidimensional scaling plot for these data showed a pronounced separation
into two groups of cases — but these groups only partly corresponded to the
class labels (see MDS plots in Supplement Section 5). The two groups were
found easily with n=40 samples, but the corresponding error rate was relatively
high because of the imperfect correlation between the class labels and the two
clusters in the plots. One is left to speculate whether this pattern was the result
of real underlying biology, or artifacts such as batch effects or sample labeling
errors. An advantage of our method is that the plotting steps make it easier
to identify such anomalies in datasets that might otherwise easily be missed.
In this case it did appear that 40 samples in the training set was adequate to
achieve accuracy near the best possible with the full n=130 samples. Although
this last dataset to some extent violates our rule-of-thumb of 2/3rds to training
set, it is also obviously an unusual dataset and perhaps argues for applying our
resampling method when possible to identify such anomalies early.

The supplement provides figures related to the fitting on the real datasets.
We found that for the application to the real-world microarray datasets it was
critical to perform at least 1,000 bootstrap re-samplings and 1,000 sample splits
in order to obtain adequately de-noised MSE curves over the range of sample
sizes.

4 Discussion

We have presented two methods for determining the optimal split of a set of
samples into a training set and a test set in the context of developing a gene
expression based classifier. These methods were applied to a range of synthetic
and real-world microarray datasets to evaluate the optimal allocation scheme.
We discovered that the optimal proportion of cases for the training set tended
to be in the range of 40% to 80% for the wide range of conditions studied. In
some cases, the MSE function was flat over a wide range of training allocation
proportions, indicating the near-optimal MSE performance was easy to obtain.
In other cases, the MSE function was less flat, indicating clearer optimal selec-
tion. In general, smaller total sample sizes led to a larger proportions devoted
to the training set being optimal. Intuitively this is because for a given degree
of class separation, developing an effective classifier requires a minimal number



of cases for training and that number is a greater proportion of a dataset with
fewer total cases.

The number of cases needed for effective training depends on the“signal
strength” or the extent of separation of the classes with regard to gene expres-
sion. “Easy” classification problems contain individual genes with large effects
or multiple independent genes with moderately large effects. For such problems
the potential classification accuracy is high (low Bayes error). The number of
training cases required for near optimal classification for such datasets is smaller
and hence smaller proportions devoted to the training set could be near optimal
(for n = 100 — 200).

We found that when the average accuracy of a classifier developed on the
full dataset (size n) was > 60%, then a %—to—% training-to-test set split resulted
near optimal MSE in all settings considered. Based on careful analysis and
interpretation of the extensive simulations in the Appendix, we think a good
rule of thumb is to assign 2/3rds to the training set and 1/3rd to the test set.
A separate Section in the Supplemental material describes the reasoning behind
this recommendation.

This paper focused on the objective of obtaining a classifier with high accu-
racy. In some clinical contexts other objectives may be more appropriate, such
as estimation of the positive and negative predictive values, or area under the
ROC curve. If the prevalence is approximately equal for each class, however,
then a high overall accuracy will be highly correlated with high negative and
positive predictive values and AUC, so the guidelines here are likely to carry
over to these other metrics.

The population prevalence from each class can be an important factor in
classifier development. In this paper we looked at equal prevalence from each
class, and at the case of 2/3 to 1/3 prevalence split in our simulations. The
real datasets had prevalences within this range as well. In cases where there
is significant prevalence imbalance between the classes (e.g., 90% versus 10%)
there will often be a number of issues outside the scope of this paper. To modify
our method for that context, one would need to address whether oversampling
from the under-represented class is needed, and whether the cost of misallocation
should differ by class.

We looked at a range of sample sizes from n = 50 to n = 200. In practice,
sample sizes of n = 50 are probably too small to divide into a training set and a
test set, and a better design uses resampling methods to estimate the classifica-
tion accuracy instead. This study supports the general advice to use resampling
methods in small sample settings because in these settings our method indicates
that the MSE is generally minimized when most of the samples are devoted to
the training set, with a typical allocation of 40 to training and only 10 samples
for the test set. This will usually be inadequate except in very preliminary
exploratory studies. For example, even if the observed classification accuracy
in the test set is 10/10 = 100%, the 95% confidence interval for classification
accuracy is 69% — 100%.

The data based resampling method presented in this paper can be used
with any predictor development method by making minor modifications to the



algorithm outlined in Section 3.4.
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Figure Legends

Figure 1: Diagram of mean squared error decomposition.

Figure 2: Example figure showing the relative contributions of the three
sources of variation to the mean squared error. This is a scenario from one
entry in Table 1. Plots for all other scenarios associated with Table 1 and Table
S1 appear in the supplement.

Figure 3: Comparison of two common rules-of-thumb: 1/2 the samples to
the training set and 2/3rds of the samples to the training set. X-axis is the
average accuracy (%) for training sets of size n. “Excess error” on the y-axis
is the difference between the root mean squared error (RMSE) and the optimal
RMSE. Each point corresponds to a cell in Table 1. Gray shading indicates
scenarios where mean accuracy for full dataset size is below 60%.
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Tables

Table 1: Table of optimal allocations of the samples to the training sets. Entries
in table are ( Atcc) where ¢ is the optimal number for the training set and Acc is

the average accuracy for a training set of size n. Total sample size is n. “DEG”
is the number of independent differentially expressed genes. “Effect” is the
standardized fold change for informative genes (difference in mean expression
divided by standard deviation). Notation such as “50+” indicates that the
MSE was flat, achieving a minimum at t=50 and remaining at that minimum
for t > 50. (Here, “flat” is defined as having a range of MSE values less than
0.0001.) Data generated with dimension P = 22,000. Each table entry based
on 1,000 Monte Carlo simulations. Equal prevalence from each of two classes.
Optimal number to training set

Effect = 0.5 | Effect = 1.0 | Effect = 1.5 | Effect = 2.0
DEG=50 170 70+ 30+ 20+
(86%) (> 99%) (> 99%) (> 99%)
DEG=10 150 130 100 60+
(64%) (94%) (99%) (> 99%)
DEG=1 10 150 120 80
(52%) (69%) (77%) (84%)
n = 100 |
DEG=50 70 80 30+ 204+
(64%) (> 99%) (> 99%) (> 99%)
DEG=10 10 80 70 40+
(55%) (91%) (99%) (> 99%)
DEG=1 10 40 80 70
(51%) (63%) (77%) (84%)
n =50
DEG=50 10 40 30+ 20+
(59%) (99%) (> 99%) (> 99%)
DEG=10 10 40 40 40
(52%) (78%) (98%) (> 99%)
DEG=1 10 10 30 40
(50%) (54%) (71%) (83%)




Table 2: Real datasets. Nonparametric bootstrap (1,000 bootstrap replicates)
with smooth spline (or isotonic regression) learning curve method results (see
supplemental material for details). n is the total number of samples from the
two classes, and “Prevalence” is the prevalence of the majority class. ¢ : v is
the optimal assignment finding, with ¢ the number of samples that should be
allocated to the training set, and v the number to the test set (¢ + v = n). %t
is the percent of samples allocated to the training set under optimal allocation,
t/n - 100%. is the estimated mean accuracy on the full dataset. “Optimal vs.
...” is the difference between the root mean squared error for an optimal training
set allocation and for the “...” allocation. Classes for datasets are: Germinal
Center B-cell-like lymphoma versus other (Rosenwald et al., 2002), renal clear
cell carcinoma primary tumor versus control normal kidney tissue (Boer et al.,
2001), acute myelogenous leukemia versus acute lymphoblastic leukemia (Golub
et al., 1999), glioblastoma versus oligodendroglioma (Sun et al., 2006)

" Full dataset Optimal vs. Optimal vs.

Dataset n  Prevalence %t Accuracy t= 2?" rule ¢ =% rule
Rosenwald 240 52% 63% 0.96 0.001 0.002
Boer 152 53% 53% 0.98 0.004 2e-4
Golub 72 65% 56% 0.95 0.002 0.004
Sun 131 62% 31% 0.83 0.022 0.008
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Figure 1: Diagram of mean squared error decomposition.
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Figure 2: Example figure showing the relative contributions of the three sources
of variation to the mean squared error. This is a scenario from one entry in Table
1. Plots for all other scenarios associated with Table 1 and Table S1 appear
in the supplement. Here there is m=1 informative gene, n=200 total samples
available for study, and the standardized fold change for the informative gene
is 26 /0 = 1.0.
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Figure 3: Comparison of two common rules-of-thumb: 1/2 the samples to the
training set and 2/3rds of the samples to the training set. X-axis is the average
accuracy (%) for training sets of size n. Y-axis “Excess error” on the y-axis is
the difference between the root mean squared error (RMSE) and the optimal
RMSE. Each point corresponds to a cell in Table 1. Gray shading indicates
scenarios where mean accuracy for full dataset size is below 60%.
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