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Physicians need improved tools for selecting treatments for individual patients. Many 
syndromes traditionally viewed as individual diseases are heterogeneous in molecular 
pathogenesis and treatment responsiveness. This results in treatment of many patients 
with ineffective drugs and leads to the conduct of large clinical trials to identify small 
average treatment benefits for heterogeneous groups of patients. New genomic and 
proteomic technologies provide powerful tools for the selection of patients likely to 
benefit from a therapeutic without unacceptable adverse events. In this chapter we 
attempt to clarify how pharmacogenomic biomarker classifiers of the patients most likely 
to benefit from a drug can be identified and utilized during clinical development. 
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1. Introduction 

 

Physicians need improved tools for selecting treatments for individual patients. For 

example, many cancer treatments benefit only a minority of the patients to whom they are 

administered. Being able to predict which patients are most likely to benefit would not 

only save patients from unnecessary toxicity and inconvenience, but might facilitate their 

receiving drugs that are more likely to help them. In addition, the current over-treatment 

of patients results in major expense for individuals and society, an expense which may 

not be indefinitely sustainable. In this paper we will address some key issues in the 

validation of pharmacogenomic classifiers. 

 
 

2. Pharmacogenomic Biomarker Classifiers 

 

Much of the discussion about disease biomarkers is in the context of markers which 

measure some aspect of disease status, extent, or activity. Such biomarkers are often 

proposed for use in early detection of disease or as a surrogate endpoint for evaluating 

prevention or therapeutic interventions. The validation of such biomarkers is difficult for 

a variety of reasons, but particularly because the molecular pathogenesis of many 

diseases is incompletely understood and hence it is not possible to establish the biological 

relevance of a measure of disease status.  
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A pharmacogenomic biomarker is any pre-treatment measurable quantity that can be used 

to select treatment; for example, the result of an immunohistochemical assay for a single 

protein, the abundance of a protein in serum, the abundance of mRNA transcripts for a 

gene in a sample of disease tissue or the presence/absence status of a specified germ-line 

polymorphism or tumor mutation. A pharmacogenomic biomarker classifier is a 

mathematical function that translates the biomarker values to a set of prognostic 

categories. These categories generally correspond to levels of predicted clinical outcome. 

With the advent of gene expression profiling, it is increasingly common to define 

composite pharmacogenomic biomarker classifiers based on the levels of expression of 

dozens of genes. For a fully specified classifier, however, all of the parameters and cut-

points are specified for determining how to weight the different components and how to 

map the multivariate data into a defined set of categories.  A completely defined classifier 

can be used to select patients and stratify patients for therapy in clinical trials that enable 

the clinical value of the classifier to be evaluated. Specifying only the genes involved 

does not enable one to structure prospective clinical validation experiments in which 

patients are assigned or stratified in prospectively well defined ways.  

 

3 Types of Pharmacogenomic Biomarker Classifiers 

 

Pharmacogenomic biomarkers can either be defined based on the known molecular target 

of the drug or empirically developed by comparing responders versus non-responders 

with regard to whole genome tumor characterizations such as transcript expression 

profiling. The former approach is preferable for a variety of reasons. First, a biomarker 
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with a strong biological rationale linked to the mechanism of action of the drug is more 

satisfying than a “black box” classifier. Second, development time is likely to be shorter, 

and finally a reproducible assay for a single gene/protein biomarker may be 

implementable on a platform that does not require fresh/frozen tumor.  

 

Mutation-targeted drugs are drugs which are specific to a mutated gene which is driving 

the growth of a tumor. For example, there is currently considerable interest in developing 

drugs specific for mutated B-raf which is present in approximately 60 percent of human 

melanomas. Such drugs have automatic pharmacogenomic biomarkers based on assaying 

for the presence of the mutation. In general, the mutation could either be a point mutation 

as in B-raf, gene amplification, or deletion.   

 

Many current cancer drugs are selected to inhibit oncogenes that are mutated in some 

tumors. Although the drugs are not designed to be specific for the mutated forms of the 

associated proteins, presence or absence of a mutation can be used as a natural 

pharmacogenomic biomarker of the patients most likely to benefit from the drugs. 

Papadopoulous et al review the experience with molecularly targeted drugs of this type 

{Papadopoulos, 2006 #287}. 

 

Although all chemotherapeutic drugs are “molecularly targeted” in the sense that they 

interact with specific intracellular components {Papadopoulos, 2006 #287}, in some 

cases the true target is not known when the drug is developed, in some cases there are 

multiple targets, and in many cases there is no obvious assay for determining the extent to 
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which the target is driving tumor growth. In these cases one must generally use empirical 

methods to develop pharmacogenomic biomarker classifiers of the patients most likely to 

benefit from the drug. With this approach a training set of tumor specimens from patients 

who have responded to the drug is assayed and compared to a training set of specimens 

from patients who have not responded. The specimens are assayed, using either whole 

genome technology such as expression profiling or using assays based on candidate 

genes, and a predictive classifier is developed for identifying the tumors most likely to 

respond. In the next section, we will describe some aspects of the development of such 

classifiers using whole genome transcript expression profiling.  

   

4. Developing Empirical Pharmacogenomic Classifiers Using Gene Expression 

 

There are three components to the empirical approach of developing a predictive 

classifier. The first is determining which genes to include in the predictor. This is 

generally called “feature selection”. Including too many “noise variables” in the predictor 

usually reduces the accuracy of prediction. The second is specification of the 

mathematical function that will provide a predicted class label for any given expression 

vector. The third is parameter estimation. Most kinds of predictors have parameters that 

must be assigned values before the predictor is fully specified. For many kinds of 

predictors there is also a cut-point that must be specified for translating a quantitative 

predictive index into a predicted class label (eg 0 or 1) for binary class prediction 

problems.  
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Feature selection is usually based on identifing the genes that are differentially expressed 

among the classes when considered individually. For example, if there are two classes, 

one can compute a t-test or a modified t-test in which a hierarchical variance model is 

used for increasing the degrees of freedom for estimation of the gene-specific within-

class variances {Wright, 2003 #284}. The logarithm of the expression measurements are 

used as the basis of the statistical significance tests. The genes that are significantly 

differentially expressed at a specified significance level are selected for inclusion in the 

class predictor. The stringency of the significance level used controls the number of 

genes that are included in the model. Although many computationally complex methods 

have been published to identify optimal sets of genes which together provide good 

discrimination, little compelling evidence currently exists that the computational effort of 

these methods is warranted.  

 

Many algorithms have been used effectively with DNA microarray data for predicting of 

a binary outcome, e.g. response versus non-response. Dudoit et al. {Dudoit, 2002 #42} 

compared several algorithms using several publicly available data sets. A linear 

discriminant is a function  

 

( ) i i
i F

l x w x
∈

=∑                                     (1) 

 

 

where xi denotes the logarithm of the expression measurement for the i’th gene, wi is the 

weight given to that gene, and the summation is over the set F of features (genes) selected 

 6



for inclusion in the class predictor. For a two-class problem, there is a threshold value d, 

and a sample with expression profile defined by a vector x of values is predicted to be in 

class 1 or class 2 depending on whether ( )l x  as computed from equation (1) is less than 

the threshold d or greater than d respectively.  

 

Many types of classifiers are based on linear discriminants of the form shown in (1). 

They differ with regard to how the weights are determined. The oldest form of linear 

discriminant is Fisher’s linear discriminant. To compute the weights for the Fisher linear 

discriminant, one must estimate the correlation between all pairs of genes that were 

selected in the feature selection step. The study by Dudoit et al. indicated that Fisher’s 

linear discriminant did not perform well unless the number of selected genes was small 

relative to the number of samples. The reason is that in other cases there are too many 

correlations to estimate and the method tends to be un-stable and over-fit the data.  

 

Diagonal linear discriminant analysis is a special case of Fisher linear discriminant 

analysis in which the correlation among genes is ignored. By ignoring such correlations, 

one avoids having to estimate many parameters, and obtains a method which performs 

better when the number of samples is small. Golub’s weighted voting method {Golub, 

1999 #12} and the Compound Covariate Predictor of Radmacher et al. {Radmacher, 

2002 #86} are similar to diagonal linear discriminant analysis and tend to perform very 

well when the number of samples is small. They compute the weights based on the 

univariate prediction strength of individual genes and ignore correlations among the 

genes.  
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Support vector machines are very popular in the machine learning literature. Although 

they sound very exotic, linear kernel support vector machines do class prediction using a 

predictor of the form of equation (1). The weights are determined by optimizing a mis-

classification rate criterion, however, instead of a least-squares criterion as in linear 

discriminant analysis (Ramaswamy et al. {Ramaswamy, 2001 #92}). Although there are 

more complex forms of support vector machines, they appear to be inferior to linear 

kernel SVM’s for class prediction with large numbers of genes {Ben-Dor, 2000 #91}.  

 

In the study of Dudoit et al. {Dudoit, 2002 #42}, the simplest methods, diagonal linear 

discriminant analysis, and nearest neighbor classification, performed as well or better 

than the more complex methods. Nearest neighbor classification is defined as follows. It 

depends on a feature set F of genes selected to be useful for discriminating the classes. It 

also depends upon a distance function ( , )d x y which measures the distance between the 

expression profiles x and y of two samples. The distance function utilizes only the genes 

in the selected set of features F. To classify a sample with expression profile y , compute 

( , )d x y for each sample  x in the training set. The predicted class of  y  is the class of 

the sample in the training set which is closest to y with regard to the distance function d. 

A variant of nearest neighbor classification is k-nearest neighbor classification. For 

example with 3-nearest neighbor classification, you find the three samples in the training 

set which are closest to the sample y . The class which is most represented among these 

three samples is the predicted class for y . Tibshirani et al. ( ) developed a variant called 
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shrunken centroid classification that combines the gene selection and nearest centroid 

classification components. 

 

 

Dudoit et al. also studied some more complex methods such a Classification Trees and 

aggregated classification trees. These methods did not appear to perform any better than 

diagonal linear discriminant analysis or nearest neighbor classification. Ben-Dor et al. 

{Ben-Dor, 2000 #91} also compared several methods on several public datasets and 

found that nearest neighbor classification generally performed as well or better than more 

complex methods. 

 

5. Developmental and Validation Studies 

 

It is important to distinguish the studies which develop parmacogenomic classifiers from 

those which utilize such classifiers for targeting treatment selection or for evaluating the 

clinical utility of such classifiers. The vast majority of published prognostic marker 

studies are developmental. Developmental studies are often based on a convenience 

sample of patients for whom tissue is available but who are heterogeneous with regard to 

treatment and stage. Although there is a large literature on prognostic markers, few such 

factors are used in clinical practice. Prognostic markers are unlikely to be used unless 

they are therapeutically relevant and most developmental studies are not based on a 

cohort medically coherent enough to establish therapeutic relevance.  
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The patients included in a developmental study of a pharmacogenomic biomarker to be 

used in drug development should be appropriate to enable identification of patients who 

are most likely to benefit from the new drug in a pivotal study. For example, suppose that 

the pivotal study involves advanced disease patients who have failed first line treatment 

and involves comparing survivals for patients receiving the new drug to survivals for 

patients receiving palliative care.   Patients from single arm phase II trials of the new 

drug could be used to develop a pharmacogenomic biomarker classifier of those patients 

likely to respond to the new drug. Dobbin and Simon ( ) have studied sample size 

considerations for developmental studies of predictive binary classifiers and have 

indicated that generally at least 20 cases in each class are required. Consequently, a phase 

II database containing at least 20 responders and 20 non-responders would be needed for 

the development of a pharmacogenomic classifier to be used in the subsequent pivotal 

trials. This may require a larger phase II developmental program than is conventional.  

 

If the pivotal study involves comparison of outcome for patients receiving a standard 

regimen C versus those receiving C plus the new drug, then development of a gene 

expression based classifier is more complex. The classifier could be developed based on 

phase II studies of patients receiving C plus the new drug, but unless one also studied 

patients receiving C without the new drug one would not know whether prediction was 

drug specific or just reflected general prognostic features of the tumors.  

 

It is possible to develop pharmacogenomic predictors of risk of tumor progression rather 

than tumor response.  Even if the patients are receiving the investigational drug as a 
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single agent, however, it may not be clear to what extent the predictor reflects drug effect 

rather than non-specific disease pace.  

 

As indicated in the previous paragraphs, there are limitations to the adequacy of a 

conventional phase II database for empirically developing a pharmacogenomic classifier 

for use in a pivotal study. In many ways the best resource for developing a 

pharmacogenomic biomarker classifier for use in a pivotal trial is a collection of pre-

treatment tumor specimens from patients enrolled in such a pivotal trial. For example, 

archived material from a “failed” pivotal trial of the drug can be used to develop a 

biomarker classifier of patients most likely to benefit from the drug compared to the 

control. The classifier can be based on the actual endpoint used in the clinical trial or 

upon an intermediate endpoint such as progression-free survival for which there may be 

more events available. By “failed” pivotal trial, I mean a trial for the same target 

population of patients which did not establish a statistically significant benefit for the 

drug for the randomized patients as a whole. The classifier developed based on archived 

material in a failed pivotal trial should be considered to have the same status as a 

classifier based on a phase II database. That is, the classifier should be used to design a 

new pivotal trial that establishes the clinical benefit of the drug in a prospectively 

specified subset of patients.  Using the same pivotal trial to develop a pharmacogenomic 

classifier and to test treatment effects in subsets determined by the classifier is generally 

not valid. Freidlin and Simon ( ) have shown how one pivotal trial can be potentially used 

for both purposes, however, if the set of patients used to develop the classifier is kept 

distinct from the set of patients used to evaluate treatment benefit. Generally, however, 
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the studies should be kept separate. Developmental studies are exploratory, though they 

should result in completely specified binary classifiers. Studies on which claims of drug 

benefit are based should be non-exploratory, but should instead test prospectively defined 

hypotheses about treatment effect in a pre-defined patient population.  

 

6. Estimates of Predictive Accuracy in Developmental Studies 

 
Developmental studies are analogous to phase 2 clinical trials. They should include an 

indication of whether the pharmacogenomic classifier is promising and worthy of phase 3 

evaluation. There are special problems in evaluating whether classifiers based on high 

dimensional genomic or proteomic assays are promising however. The difficulty derives 

from the fact that the number of candidate features available for use in the classifier is 

much larger than the number of cases available for analysis. In such situations, it is 

always possible to find classifiers that accurately classify the data on which they were 

developed even if there is no relationship between expression of any of the genes and 

outcome {Radmacher, 2002 #15}.  Consequently, even in developmental studies, some 

kind of validation on data not used for developing the model is necessary. This “internal 

validation” is usually accomplished either by splitting the data into two portions, one 

used for training the model and the other for testing the model, or some form of cross-

validation based on repeated model development and testing on random data partitions. 

This internal validation should not, however, be confused with external truly independent 

validation of the classifier.  
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The most straightforward method of estimating the prediction accuracy is the split-

sample method of partitioning the set of samples into a training set and a test set. 

Rosenwald et al. {Rosenwald, 2002 #14} used this approach successfully in their 

international study of prognostic prediction for large B cell lymphoma. They used two 

thirds of their samples as a training set. Multiple kinds of predictors were studied on the 

training set. When the collaborators of that study agreed on a single fully specified 

prediction model, they accessed the test set for the first time. On the test set there was no 

adjustment of the model or fitting of parameters. They merely used the samples in the test 

set to evaluate the predictions of the model that was completely specified using only the 

training data. In addition to estimating the overall error rate on the test set, one can also 

estimate other important operating characteristics of the test such as sensitivity, 

specificity, positive and negative predictive values.  

 

The split-sample method is often used with so few samples in the test set, however, that 

the validation is almost meaningless. One can evaluate the adequacy of the size of the test 

set by computing the statistical significance of the classification error rate on the test set 

or by computing a confidence interval for the test set error rate. Since the test set is 

separate from the training set, the number of errors on the test set has a binomial 

distribution.  

 

Michiels et al. {Michiels #181} suggested that multiple training-test partitions be used, 

rather than just one. The split sample approach is mostly useful, however, when one does 

not have a well defined algorithm for developing the classifier. When there is a single 
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training set-test set partition, one can perform numerous unplanned analyses on the 

training set to develop a classifier and then test that classifier on the test set. With 

multiple training-test partitions however, that type of flexible approach to model 

development cannot be used. If one has an algorithm for classifier development, it is 

generally better to use one of the cross-validation or bootstrap resampling approaches to 

estimating error rate (see below) because the split sample approach does not provide as 

efficient a use of the available data {Molinaro, 2005 #182}. 

   

Cross-validation is an alternative to the split sample method of estimating prediction 

accuracy{Radmacher, 2002 #15}. Molinaro et al. describe and evaluate many variants of 

cross-validation and bootstrap re-sampling for classification problems where the number 

of candidate predictors vastly exceeds the number of cases.{Molinaro, 2005 #182} The 

cross-validated prediction error is an estimate of the prediction error associated with 

application of the algorithm for model building to the entire dataset.  

 

A commonly used invalid estimate is called the re-substitution estimate. You use all the 

samples to develop a model. Then you predict the class of each sample using that model.  

The predicted class labels are compared to the true class labels and the errors are totaled.  

It is well-known that the re-substitution estimate of error is highly biased for small data 

sets and the simulation of Simon et al.{Simon, 2003 #12} confirmed that, with a 98.2 % 

of the simulated data sets resulting in zero misclassifications even when no true 

underlying difference existed between the two groups.  
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Simon et al.{Simon, 2003 #12} also showed that cross-validating the prediction rule after 

selection of differentially expressed genes from the full data set does little to correct the 

bias of the re-substitution estimator: 90.2 % of simulated data sets with no true 

relationship between expression data and class still result in zero misclassifications. 

When feature selection was also re-done in each cross-validated training set, however, 

appropriate estimates of mis-classification error were obtained; the median estimated 

misclassion rate was approximately 50%.   

 

7. Use of Pharmacogenomic Classifiers in New Drug Development 

 

With a pharmacogenomic classifier for predicting which patients are likely to benefit 

from an available treatment regimen, the emphasis should be on validation of the clinical 

utility of using the classifier. With an experimental therapy, however, the emphasis 

should be on demonstrating effectiveness of the drug in a population identified by the 

classifier. Simon and Maitournam {Simon, 2004 #160; Simon, 2006 #278} demonstrated 

that use of a genomic classifier for focusing a clinical trial in this manner can result in a 

dramatic reduction in required sample size, depending on the sensitivity and specificity of 

the classifier for identifying such patients. Not only can such targeting provide a huge 

improvement in efficiency in phase III development, it also provides an increased 

therapeutic ratio of benefit to toxicity and results in a greater proportion of treated 

patients who benefit.  
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Simon and Maitournam consider use of the Targeted Design shown in Figure 1. During 

pre-clinical and phase I/II clinical development one identifies a fully specified classifier 

of which patients have a high probability of responding to the experimental drug. That 

classifier is then used to select patients for phase III trial. This is a form of enrichment 

design. Table 1 shows the number of events required in order to have 80% statistical 

power for comparing exponential survival times using the design of Figure 1 if the 

treatment results in a halving of the hazard in the patients selected for study using the 

classifier. The number of events shown in Table 1 is compared to the number of events 

required in a standard clinical trial if the classifier is not used to select patients for 

randomization (Table 2). The table assumes that the treatment is not effective for the 

classifier negative patients. More extensive results on relative efficiency of the targeted 

and untargeted designs are described by Simon and Maitournam {Maitournam, 2005 

#207; Simon, 2004 #160}. 

 

 

For many molecularly targeted drugs, however, the appropriate assay for selecting 

patients is not known and development of a classifier based on comparing expression 

profiles for phase II responders versus phase II non-responders may be the best approach. 

In such instances, one may not have sufficient confidence in the genomic classifier 

developed in phase II to use it for excluding patients in phase III trials as in Figure 1. It 

may be better in this case to accept all conventionally eligible patients, and use the 

classifier in the pre-defined analysis plan.  
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Figure 2 shows the Marker by Treatment Interaction Design discussed by Sargent et 

al.{Sargent, 2005 #202} and by Pusztai and Hess{Pusztai, 2004 #203}. Both marker 

positive and marker negative patients are randomized to the experimental treatment or 

control. The analysis plan either calls for separate evaluation of the treatment difference 

in the two marker strata or for testing the hypothesis that the treatment effect is the same 

in both marker strata. When this design is used for development of an experimental drug, 

an appropriate analysis plan might be to utilize a preliminary test of interaction; if the 

interaction is not significant at a pre-specified level, then the experimental treatment is 

compared to the control overall. If the interaction is significant, then the treatment is 

compared to the control within the two strata determined by the marker. The sample size 

planning for such a trial and determination of the appropriate significance level for the 

preliminary interaction test require further study.     

 

Freidlin and Simon{Freidlin, 2005 #208} proposed an alternative analysis plan for the 

design of Figure 2. They suggested that the overall null hypothesis for all randomized 

patients is tested at the 0.04 significance level. A portion, e.g. 0.01, of the usual 5 percent 

false positive rate is reserved for testing the new treatment in the subset predicted by the 

classifier to be responsive. The analysis starts with a test of the overall null hypothesis, 

without a preliminary test of interaction. If the overall null hypothesis is rejected, then 

one concludes that the treatment is effective for the randomized population as a whole 

and that the classifier is not needed. If the overall null hypothesis is not rejected at the 

0.04 level, then a single subset analysis is conducted; comparing the experimental 

treatment to the control in the subset of patients predicted by the classifier as being most 

 17



likely to be responsive to the new treatment. If the null hypothesis is rejected, then the 

treatment is considered effective for the classifier determined subset. This analysis 

strategy provides sponsors an incentive for developing genomic classifiers for targeting 

therapy in a manner that does not unduly deprive them of the possibility of broad labeling 

indications when justified by the data. 

 

8. Conclusions 

 

Physicians need improved tools for selecting treatments for individual patients. The 

genomic technologies available today are sufficient to develop such tools. There is not 

broad understanding of the steps needed to translate research findings of correlations 

between gene expression and prognosis into robust diagnostics validated to be of clinical 

utility. This paper has attempted to identify some of the major steps needed for such 

translation. 
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Figure Legends 

 

Figure 1.  Targeted clinical trial design for evaluating a new experimental therapy. A 

biomarker classifier is developed for identifying those patients most likely to respond to 

the new treatment (E). Only those patients are randomized to E versus the control 

treatment. The patients predicted less likely to respond (marker negative) are off study. 

The targeted design is most useful in cases where the biomarker classifier has a strong 

biological rationale for identifying responsive patients and where it may not be ethically 

advisable to expose marker negative patients to the new treatment. 

 

Figure 2. Stratified analysis design for evaluating a new experimental treatment (E) 

relative to a control (C). The status of a biomarker based classifier of the likelihood of 

responding to E is utilized in a prospectively specified analysis plan. The biomarker 

classifier is not just used for stratifying the randomization. Alternative analysis plans are 

described in the text.  
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Hazard Ratio for Marker + Patients Number of Events Required 
0.5 74 
0.67 200 

 
Table 1: Approximate number of events required for 80% power with 5% two-sided log-

rank test for comparing arms of design shown in Figure 3. Only marker + patients 
are randomized. Treatment hazard ratio for marker + patients is shown in first 
column. Time-to-event distributions are exponential and all patients are followed 
to failure. 
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Proportion of Patients Marker + Approximate Number of Events Required 
20% 5200 
33% 1878 
50% 820 

 
Table 2: Approximate number of events required for 80% power with 5% two-sided log-

rank test for comparing arms of design shown in Figure 1. Randomized arms are 
mixtures of marker – and marker + patients. Hazard ratio for marker – patients is 
1 for the two treatment groups and 0.67 for marker + patients. All patients are 
followed to failure. 
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Figure 1 
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