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ABSTRACT 
 

High-throughput molecular analysis technologies can produce thousands of 

measurements for each of the assayed samples. A common scientific question is to 

identify the variables whose distributions differ between some pre-specified classes (i.e., 

are differentially expressed). The statistical cost of examining thousands of variables is 

related to the risk of identifying many variables that truly are not differentially expressed, 

and many different multiple testing strategies have been used for the analysis of high-

dimensional data sets to control the number of these false positives. An approach that is 

often used in practice to reduce the multiple comparisons problem is to lessen the number 

of comparisons being performed by filtering out variables that are considered non-

informative “before” the analysis. However, deciding which and how many variables 

should be filtered out can be highly arbitrary, and different filtering strategies can result 

in different variables being identified as differentially expressed. We propose the filtering 

enhanced variable selection (FEVS) method, a new multiple testing strategy for 

identifying differentially expressed variables. This method identifies differentially 

expressed variables by combining the results obtained using a variety of filtering 

methods, instead of using a pre-specified filtering method or instead of trying to identify 

an optimal filtering of the variables prior to class comparison analysis. We prove that the 

FEVS method probabilistically controls the number of false discoveries, and we show 

with a set of simulations and with an example from the literature that FEVS can be useful 

for gaining sensitivity for the detection of truly differentially expressed variables.  
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1 INTRODUCTION  
 

High-throughput molecular analysis technologies can produce thousands of 

measurements for each of the assayed samples.  For example, gene-expression 

microarray experiments measure simultaneously the expression of thousands of genes 

(variables), which comprise a “profile” for each specimen. A common scientific question 

is whether and how the profiles differ on average between two or more different classes 

of specimens. Although this question can be asked globally (are the average profiles 

different between classes?), typically there will be interest in identifying specific 

variables whose distributions differ between the classes (referred to here as differentially 

expressed variables); see [1,2]. 

One approach to this problem is to perform an appropriate (univariate) statistical test 

for each variable (e.g., a t-test for a two-class comparison), and then, because thousands 

of variables have been examined, adjust the results to control probabilistically the number 

or proportion of variables erroneously identified as differentially expressed (false 

positives or false discoveries). Many different methods have been used with high-

dimensional data (see [3] for a review).  

In practice, many investigators reduce the multiple testing problem by removing from 

their data sets those variables that show very little variation in expression across all the 

specimens regardless of class. For instance, Yamanaka et al. [4] used a univariate 

proportional hazards model to identify the genes associated with survival in a cohort of 

malignant glioma patients; only the genes whose expression differed by at least 1.5-fold 

from the median in at least 20% of the arrays were retained in their analysis. Fält et al. [5] 
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identified the genes that were differentially expressed between irradiated and non-

irradiated human lymphocytes excluding the genes with low variation across their data 

set (less than 3-fold ratio between maximum and minimum and less than 100 difference 

between maximum and minimum observed intensities). Additional examples can be 

found in [6-11]. The rationale behind this practice is that variables filtered out are 

unlikely to be differentially expressed between classes and, at the same time, their 

removal might improve the sensitivity of the multiple-comparisons-adjusted analysis. 

This is because the variability (regardless of class) of the differentially expressed 

variables is inflated by the differences between classes and therefore, even if these 

variables have the same intraclass variability as the null variables, they are more likely to 

be retained in the filtered data sets. 

Variable filtering requires two choices: (i) which statistic will be used to rank the 

variables for filtering purposes (the filtering ranking-statistic; e.g., the sample variance of 

the variable, the ratio of the 95th to 5th percentile, a max/min-based ratio, or the 

interquartile range) and (ii) how many variables will be filtered out (the stringency of the 

filtering; e.g., a pre-specified proportion of the variables should be filtered out, or 

variables to drop depend on a threshold value for the filtering ranking statistics that is 

chosen a priori). These choices are clearly arbitrary and can have a substantial impact on 

the final results of the analyses, i.e., on the list of variables identified as differentially 

expressed. For example, the use of a particularly stringent filtering method, which filters 

out many variables, might exclude from consideration some of the truly differentially 

expressed variables.  On the other hand, the use of a less stringent filtering method 

(which filters out few or none of the variables) might fail to identify some of the truly 
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differentially expressed variables due to the multiple comparisons correction, especially 

in experiments that do not have high power.  

This paper proposes a new multiple testing strategy for identifying differentially 

expressed variables in high-dimensional data sets, the filtering enhanced variable 

selection (FEVS) method.  This method identifies differentially expressed variables by 

combining the results obtained using a variety of filtering methods. The FEVS method is 

based on the multivariate permutation procedure to control the number of false 

discoveries [12], and therefore, it can be used in all the situations in which multivariate 

permutation methods are applicable provided that it is feasible to specify a criterion to 

filter out potentially non-informative variables. This nonparametric procedure accounts 

for the correlation between variables and we prove that it controls probabilistically the 

number of false discoveries. 

In section 2 we describe FEVS and show how to apply it with class-independent 

filtering methods. In section 3 we present a set of limited simulations to show that in a 

variety of situations FEVS can be useful for gaining sensitivity for the detection of the 

truly differentially expressed variables, while controlling the number of false discoveries. 

We apply the method to published data from a breast cancer gene expression microarray 

study in section 3.2.  We end with a discussion in section 4, including the possibility of 

using FEVS with class-dependent filtering. 

 

2 METHODS 
 
 We restrict attention to the two-class comparison in this section; see the 

Discussion for description of the straightforward extension to other situations.  The FEVS 
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method to identify which of k variables has class differences extends the multivariate 

permutation testing (MPT) method described by Korn et al [12].  It is assumed that there 

exists a -dimensional subvector of the k-dimensional vector of variables that is 

independent and identically distributed regardless of from which class the sample came.  

We denote variables in the subvector as “null hypothesis variables” and note that they 

each satisfy the standard univariate null hypothesis of no class difference.  Without 

filtering, a k-dimensional vector  of p-values is calculated for which the i th 

component is equal to the univariate p-value for the ith variable using a two-sample test 

(e.g., a t-test).  (Instead of p-values, any univariate statistic could be used that ranked the 

variables according to their ability to discriminate the classes.)  The data vectors are then 

permuted between the two classes and the vector of p-values is recomputed, 

.  The MPT-based procedure that identifies variables whose original p-

value  is less than the 

0k

),...,,( 21 kppp

)*,...,*,*( 21 kppp

)( ip α  quantile of the permutation distribution of the (u+1)st 

smallest p-value of  will identify more than u  null-hypothesis variables 

with probability 

)*,...,*,*( 21 kppp

< α  [12].    

 To extend the MPT procedure to incorporate filtering, consider S  different class-

independent strategies, each of which filters out variables according to a different rule.  

Let  be the number of variables that are not filtered out by the s th filtering criterion.  

For filtering method s and variable i not filtered out by this method, we define a 

“Bonferroni-like adjusted p-value ranking statistic” (BLAPS) to be the product of the 

observed p-value on the complete data set  and the number of variables not filtered 

out by that filtering method ( ).  Note that the larger the number of variables filtered out 

sk

)( ip

sk
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by the filtering method, the smaller the required correction applied to the p-value from 

the complete data set. When variable i is filtered out by a given filtering method s, its 

BLAPS is set equal to k .  BLAPS are not exactly equivalent to the well known 

Bonferroni-adjusted p-values, since we do not constrain them to take values < 1. We 

define the quantity m  as the minimum BLAPS obtained for the i th variable when 

applying the S filtering methods. The quantity m

i

i  will be equal to the BLAPS derived 

from the filtering method that filters out the largest number of variables among those 

methods that do not filter out the variable i.  The rationale behind the use of the  

quantities is to reduce the multiple comparisons problem in a variable-dependent way:  

variables that are filtered out early (before most of the others) with a less stringent 

filtering method benefit little from the reduction of the multiple comparisons correction 

produced by the use of a filtering method, and their p-values are adjusted with a large , 

while the opposite happens for the variables that are filtered out late (after most of the 

others) with a more stringent filtering method. However, none of the variables is 

excluded a priori from being identified as differentially expressed by the use of a specific 

filtering method. 

im

sk

 The following generalization of the results given in [12], shows that we can use a 

class of statistics (that includes the ) to control probabilistically the number of false 

positives. The results given in [12] do not directly apply since the statistic 

im

im  is not just a 

function of the data for variable i.   

 

Proposition: Let {X1 ,…, Xn} and {Y1,…, Ym} be the k-dimensional data vectors for class 

1 and class 2, respectively.  We assume that a -dimensional subvector of the k-0k
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dimensional vectors is independent and identically distributed (the “null hypothesis 

variables”).  Let  

 =g ( {XiW 1i,…, Xni}, {Y1i,…, Y mi}, {X1,…, Xn, Y1,…, Ym })   (2.1) 

be a function of the set of class 1 data values for variable i, the set of class 2 data values 

for variable i, and the set of data vectors regardless of class, with smaller values of   

suggesting a class difference for variable i.  (Expression (2.1) requires that  does not 

depend on class labels except for the association of the values of variable i  w ith class 

label.)  Consider constructing permuted data sets by permuting the class labels, and, for 

each permuted data set, calculating the W’s on all the variables, say, .  Let 

 denote the ordered ’s, and let  

iW

iW

*,...,*,*
21 kWWW

*,...,*,*
)()2()1( kWWW *W

 ( )αα ≤<= }),...,,...,{|*(| 11)(, mnuu yyxxcWPcMAXc  

where  refers to the probability under the permutation 

distribution.  (The quantity  is, using one standard definition of quantiles for discrete 

distributions [13], the 

( },...,,...,{| 11 mn yyxxP • )

uc ,α

α  quantile of the distribution of  conditional on 

.)   The procedure that identifies all variables with  will 

identify more than u null-hypothesis variables with probability 

*
)(uW

},...,,...,{ 11 mn yyxx ui cW ,α<

< α .  In other words, the 

procedure will control the number of false positive results (false discoveries) with 1-α 

confidence. 

 

Proof: Let  be the set of indices corresponding to the null-hypotheses 

variables, let  be the ordered W statistics on the original 

},,1{ kI Κ⊆

0
)(

0
)2(

0
)1( 0
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(unpermuted) data set restricted to Ii∈ , let be the ordered W 

statistics on a permuted data set restricted to 

*...** 0
)(

0
)2(

0
)1( 0kWWW ≤≤≤

Ii∈ , and let 

 ( )αα ≤<= }),...,,...,{|*(| 11
0

)(
0

, mnuu yyxxcWPcMAXc  

Note that although  is unknown to us, we do know that  because 0
,ucα uu cc ,

0
, αα ≥

**
)(

0
)( uu WW ≥   (the { ’s} being a subset of the { ’s}).  The proof that the probability 

that u or more null hypotheses variables are identified is 

*0W *W

< α is given by: 

 

P( u or more null hypotheses variables identified) 

= P( <c0
)(uW α,u) 

= E [ P( <c0
)(uW α,u | {X1 ,…, Xn, Y1 ,…, Ym})] 

≤ E [ P( 0
,

0
)( uu cW α<  | {X1 ,…, Xn, Y1 ,…, Ym})] 

= E [ P( 0
,

0
)(
*

uu cW α<  | {X1 ,…, Xn, Y1 ,…, Ym})] 

≤ E ( α)=α. 

 

where the penultimate equality follows because the constraint specified by (2.1) on the W 

functions ensures that   

P( cW u <0
)(  | {X1 ,…, Xn, Y1 ,…, Ym})=P( cW u <*0

)(  | {X1 ,…, Xn, Y1 ,…, Ym}).                 (2.2) 

 In our application, the  are the , which satisfy (2.1).  In practice, we use the 

following algorithm for controlling the number of false discoveries to be less than or 

equal to a specified number u with 1-α confidence. In this algorithm, the univariate p-

iW im
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values of the original and of the permuted data sets in the Korn et al. [12] algorithm are 

replaced by the m i  quantities.  

2.1 FEVS (to control for ≤ u false positives) 

(0) Calculate the quantities for the original data set. im

(1) Initialize the counters COUNTi=0 for i = 1,…,k. 

(2) Choose a random permutation of the sample profiles consistent with the experimental 

design.  Denote the univariate p-values for the variables from this permutation by 

. Apply the S  f iltering methods to each permuted data set and obtain for 

each of the variables the  quantities, defined as described for the original data. 

)*,...,*,*( 21 kppp

*
im

(3) Let [ ] )1(21 }*,...,*,*{* += ukmmmq , where the notation [A](j) is defined as the j t h smallest 

of the elements of the set A. 

(4) If  then COUNT*qmi ≥ i= COUNTi+1 for i = 1,…,k. 

(5) Repeat steps 2-4 B times. 

(6) Define the “adjusted p-vlaues” =(1+COUNTip̂ i)/(1+B) for i = 1,…,k. 

(7)  If u>0, let J  be the set of indices of the u smallest  values, i = 1,…,k, and let 

 for 

im

0ˆ =ip Ji∈ . 

 The FEVS method calls differentially expressed the variables for which α≤ip̂ .  

If the sample sizes are small enough so that all the permutations can be enumerated, then 

all of the permutations except the one corresponding to the observed data should be used 

in Steps 2-4 and B  equals the total number of permutations minus one. 
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 Our procedure is not tailored to a specific filtering method and in principle any S 

class-independent filtering methods can be used. As a particular case of FEVS, the set of 

the S  considered filtering methods can be chosen to include those based on the same 

filtering ranking-statistic that filter out variables with all the possible degrees of 

stringency, i.e., filtering out, respectively, none of the variables, the variable with the 

least variation, the 2 variables with the least variation,….and the k-1 variables with the 

least variation (retaining only the variable with most variation).  This particular choice of 

the set of S, consisting of k  nested filtering methods, is particularly appealing because it 

avoids the need to specify how many filtering methods should be considered and which 

stringency should be used.  At the same time, it turns out to be particularly convenient 

from a computational point of view. The m i  can be calculated straightforwardly, 

multiplying the original p-values by the rank of the variables according to the filtering 

ranking-statistic (the higher the ranking of the variable, the more stringent filtering 

method is needed to filter out the variable). In general, we can define mi = pi 
. ranki, where 

ranki is the rank of the i th variable according to the filtering ranking-statistic (with 

smaller ranks meaning larger variability). This simplifies the computations, because only 

the original p-values and the ranking of the variable according to the selected filtering 

ranking-statistic are needed to derive the mi, and it is no longer necessary to derive 

explicitly which variables are filtered out by each of the S  filtering methods. The same 

simplification applies for deriving the  within each permuted data set: the ranking of 

the variables according to the filtering ranking-statistic does not change between the 

original and the permuted data sets because we use class-independent filtering-ranking 

*
im
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statistics; therefore, for each permutation one needs to derive only the p-values for all the 

variables.  

 We conducted several simulation studies to assess the performance of this version 

of FEVS, where the interquartile range was used to rank the variables for filtering. In a 

set of preliminary simulations we observed a loss of sensitivity when all the possible 

stringencies of the filtering methods were considered, compared to the situations in which 

the filtering methods that filtered out all but few variables were excluded. In practice, 

when 10,000 or 50,000 variables were considered, excluding from the set of filtering 

methods those that retained 100 or less variables proved to be effective in avoiding this 

loss of sensitivity (data not shown); therefore, this version of FEVS was used in all the 

simulations that are presented. Once again, the adaptation of the original FEVS method to 

take into account this modification of the algorithm is straightforward, with mi = pi 
. ranki  

if ranki >100  and mi = pi 
.100, otherwise. 

 An R package for performing the FEVS method is available at 

http://linus.nci.nih.gov/Data/LusaL/bioinfo/. 

 

3 RESULTS 
 
3.1 Simulation Results 

We conducted several simulation studies to assess the performance of FEVS.  Unless 

otherwise noted, all the simulations that are presented used the version of FEVS in which 

the variables were ranked based on their interquartile range and all but the filtering 

methods that retained less than 100 variables were considered. We compared the class 

comparison results from FEVS with those obtained (i) without filtering out any of the 
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variables from the data sets, (ii) with filtering out a fixed percentage of the variables (P%) 

based on the same filtering ranking-statistic used with FEVS and (iii) with a naïve 

filtering method (“longest list filtering”) that selects a fixed-percentage filtering method 

after considering many of them, by choosing the one that identifies the longest list of 

differentially expressed variables.  All the analyses with filtering methods different than 

FEVS are based on the multivariate permutation testing based procedure (MPT-based 

procedure) [12], in which we control for the same number of false positives and with the 

same confidence as we do for FEVS. 

Even though FEVS can be used in more complex settings, we considered in all the 

simulations and examples a simple two-class comparison problem, in which univariate 

(unadjusted) p-values comparing the variable expression between the two groups were 

based on parametric two-sample t-tests with pooled variances. Each simulation was 

repeated 10,000 times. For purposes of computational feasibility, 99 permutations were 

performed at each iteration. We controlled the number of errors to be less than or equal to 

u= 0 or u=10, with 95% confidence. 

In the simulation studies, the expression of 50,000 variables for two groups of 5, 20 

or 50 samples each was simulated independently from a multivariate Gaussian 

distribution. Variances for each variable were drawn from an inverse gamma distribution 

with shape parameter a= 3 and scale parameter b=1, as in [14].  

3.1.1. Global null 

In the first set of simulations (Table 1), zero means were used for all of the variables 

in both classes (global null case) and the variables were uncorrelated. Table 1 reports the 

proportion of the simulations for which the number of false discoveries was bigger than u 
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(u=0 and u=10) for FEVS and for the other filtering methods considered (nominal 

proportion=.05). The number of samples in each group was 5, 20 and 50.  The FEVS 

method satisfied the targeted 95% confidence and so did, as expected, the class-

independent fixed-percentage filtering methods considered. The naïve “longest-list” 

procedure identified a number of (false positive) variables higher than the number of 

allowed errors in more than 5% of the cases.  For example, when considering 5 samples 

per group and allowing for 10 errors, more than 10 variables were identified in 22% of 

the simulations.  

 

3.1.2. Alternative case 

In the second set of simulations (Table 2), 300 out of the 50,000 variables were 

differentially expressed between the two classes. The difference in the means between the 

two classes for these 300 variables ranged between 0.6 and 3.5 (10 variables in 

increments of  0.1 units between 0.6 and 3.5). For the case of five samples per group, the 

first two columns of the first panel in Table 2 show the increased sensitivity of FEVS in 

detecting differentially expressed variables compared to no filtering when the variables 

were uncorrelated.  In this simulation, fixed-50% filtering was similar in performance to 

no filtering and the FEVS performance was similar to fixed-97.5% filtering, identifying 

more differentially expressed variables among those with higher mean shifts (Table 2 and 

Fig.1a).  In general, we observed that a larger number of variables were identified using 

more stringent filtering criteria. However, when allowing for 10 errors, we observed that 

the most stringent filtering method identified fewer variables than FEVS among those 

with smaller mean-shifts (Fig. 1b). Additional simulations were performed in which the 
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sample size was increased from 5 to 20 samples per group, with the other parameters 

maintained (first two columns of second panel in Table 2). When allowing for 0 and 10 

errors, the results showed that filtering out variables did not increase the sensitivity for 

detecting differentially expressed variables and that the FEVS performance was very 

similar to no filtering, while fixed-90 and 97.5% filtering failed to identify many of the 

variables with smaller mean shifts and did not identify more variables with high mean 

shifts (Table 2 and Fig 1c and Fig 1d).  This simulation shows that more stringent fixed-

percentage filtering methods do not always identify the largest number of variables, and 

that the results obtained with FEVS are not always similar to those obtained with the 

fixed-97.5% filtering.  However in both of these examples, FEVS was most sensitive or 

close to the most sensitive method.  Very similar results were observed when the sample 

size was further increased to 50 samples per group (Table 2, third panel and Fig 1e and 

1f); in this simulation the sensitivity for identifying differentially expressed variables was 

close to 1 when no filtering was used (both for u=0 and u=10), and this high sensitivity 

was maintained by FEVS. 

Comparable results were obtained when the variables were not all independent but 

simulated under a block exchangeable correlation structure, in which the variables in the 

same block were correlated while the variables from different blocks were independent. 

In particular, Table 2 (second two columns of each panel) displays the results in which 

blocks contained 100 correlated variables, pairwise correlation within each block was 

equal to 0.3 and the 300 differentially expressed variables were included in the first three 

blocks. 
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The simulation results shown so far, together with additional simulations (data not 

shown), suggest that FEVS is more useful in gaining sensitivity in situations where 

sample size is small (n= 5 per class), when compared to no filtering.  We explain why this 

is true with class-independent filtering in the Discussion.  However, we note that one can 

identify examples in which FEVS is more sensitive than no filtering even with larger 

sample sizes. For example, for n = 20 per group, using an intraclass variance of 1 for all 

the 50,000 variables and simulating 100 of differentially expressed variables with a mean 

shift equal to 1.92, the average sensitivity of FEVS was 74.3%, compared to the 58.9% 

sensitivity obtained without filtering variables.  The next section discuses other examples 

in which FEVS has higher overall sensitivity than any of it constituent filtering methods.   

 

3.1.3. Examples when FEVS outperforms all of its constituent filtering methods 

To help demonstrate that FEVS can potentially perform better than any of its 

constituent filtering methods, we considered a further situation with 2 sets of 50 

differentially expressed variables out of the 50,000 variables. For one set of variables, the 

univariate tests have high power for identifying differentially expressed features due to 

small intraclass variability. The second set has a larger difference of means between the 

two classes, but lower power because of larger intraclass variability. The mean-shifts 

were chosen to obtain 95% univariate-power based on Bonferroni adjustment for the first 

set of variables on the complete data set (without filtering) and 80% power for the second 

set if only 5,000 variables were retained in the data set (90% filtering).  

Results of a simulation with n = 5 per group are presented in the left-most panel of 

Table 3.  For this simulation, the mean shift between the two classes for the differentially 
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expressed variables in set 1 was 1.18 and the intraclass standard deviation (σ) was fixed 

to 0.1; in the second set of differentially expressed variables, the mean shift was 7.37 and 

the intraclass standard deviation was 1. The number of allowed errors was u = 0; the null 

variables were simulated in two equal size groups, with one group having the same 

intraclass variance as the group 1 differentially expressed variables and the other group 

having the same intraclass variances as group 2 (24,950 with σ=0.1 and 24,950 with 

σ=1), and all the variables were independent. The results reported in Table 3 (first panel) 

show that in this particular setting FEVS was not similar to any of the fixed-percentage 

filtering methods, none of which reached a higher sensitivity to detect differentially 

expressed variables than FEVS.  In particular, FEVS identified about 86% of the 

variables from the second set, with the more stringent fixed-percentage filtering methods 

doing slightly worse (75%). On the other hand, FEVS identified about 68% of the 

variables from the first set, all of which were filtered out by the more stringent methods.  

A very similar result was obtained when we considered n = 20 samples in each class, and 

simulated mean shifts of 0.25 and 1.91 for the two differentially expressed sets, with all 

the other parameters kept equal to those described for the simulation with n = 5 (see Table 

3, second panel). For n = 50, where we simulated mean-shifts of 0.14 and 1.11, the 

sensitivity for the first set was 95% for no filtering and 90% for FEVS, while for the 

second set it was higher for FEVS (69% vs. 61%, see Table 3, third panel). 

 

3.2 An application to microarray data from breast cancer  

Sotiriou et al. [15] analyzed cDNA gene expression profiles from 99 tumor 

specimens from breast cancer patients.  In addition to gene expression values for 7650 
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genes (clones) pre-processed as described in [15], there was standard prognostic variable 

information available for each patient. (The data are publicly available at 

http://www.pnas.org/cgi/content/full/1732912100/DC1 in Supporting Tables 2 and 3.) 

Using additional information publicly available on the NCI Microarray Database (mAdb) 

website (http://nciarray.nci.nih.gov/cgi-bin/gipo) for the array print set used in this study 

(Hs-ATC7.6k-v5p4-020801), we identified 292 spots on the array for which clones failed 

the sequence verification and changed their identity. The annotation of the remaining 

clones was updated by submitting the IMAGE clone IDs to Source 

(http://source.stanford.edu). Updates from all of these databases were downloaded on 

7/31/07. 

Here we consider two two-class comparisons based on two-sample t-tests and control 

for the number of false positives with 95% confidence.  For each comparison, we 

restricted attention to genes for which the number of missing values was less than the 

number of specimens in the class with fewer observations minus 2. We use FEVS based 

on the interquartile range ranking of the genes and 9,999 resampled permutations.  

The first comparison is for patients with grade 1 or 2 tumors (n = 54) versus patients 

with grade 3 tumors (m=45) with k=7498 genes.  Allowing for no errors (u = 0), the MPT-

based procedure without any filtering of the genes identifies 6 genes, while FEVS 

identifies 20 genes.  Allowing for 10 errors (u = 10), 94 and 124 genes are identified by 

the no-filtering and FEVS procedures, respectively (Table 4).   

The second comparison is for patients with estrogen receptor (ER) negative status 

(n=34) versus patients with ER positive status (m = 65) with k=7470 genes (ER measured 

with ligand-binding assay).  Allowing for no errors (u = 0), the MPT-based procedure 
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with no filtering identifies 172 genes and FEVS identifies 199 genes.  Allowing for 10 

errors (u = 10), the number of genes identified without filtering out any of the genes is 

higher than that obtained with FEVS (503 and 472 genes, respectively, with 424 genes 

included in both lists, Table 4).  Most of the genes not identified by FEVS had small gene 

expression differences between the two groups (data not shown). 

Even though in the second comparison the number of genes identified decreases as 

more genes are filtered out, the genes included in the lists obtained with more stringent 

filtering methods were not necessarily included in the list obtained without filtering data. 

For example, just 71% of the 247 genes obtained with a fixed-90% filtering were 

included in the 503 genes obtained with no filtering. As was observed with the 

simulations, the fixed-percentage filtering method with which the highest number of 

differentially expressed genes was identified varied, depending on the number of errors 

allowed for and, in this case, also on the class-defining variable being analyzed (Table 4).  

We evaluated the biological plausibility of the genes identified by FEVS but not by the 

MPT-based procedure without any filtering of the genes (FEVS-exclusive genes), 

checking whether these genes were previously identified by other investigators using 

microarray technology. We used the breast cancer data sets included in Oncomine [16] as 

of July 2007 (http://www.oncomine.org) for which ER (19 data sets) or grade information 

(15 data sets) was available and evaluated the differential expression using the statistical 

significance test provided in Oncomine (t-test for gene expression classified by ER status 

and correlation between gene expression and tumor grade (1, 2, or 3)). The list of the 

selected studies and the results  of this analysis are included in the Supplementary 

Information, available at http://linus.nci.nih.gov/Data/LusaL/bioinfo/. Results showed 
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that most of the FEVS-exclusive genes were found differentially expressed also in 

independent data sets.  For grade, allowing for 0 errors (10 errors) we identified 14 (32) 

unique FEVS-exclusive genes, most of which were identified by Oncomine as highly 

significantly associated with grade in at least one of the independent data sets (Table S1). 

For ER status, allowing for 0 errors (10 errors) we identified 29 (31) unique known 

FEVS-exclusive genes, most of which were identified by Oncomine as highly 

significantly associated with ER status in at least one of the independent data sets (Table 

S2).    

 

4  DISCUSSION 

 

In this paper we presented a new approach (FEVS) to identification of differentially 

expressed variables for high-dimensional data sets, which can be used in any situation in 

which multivariate permutation methods are applicable. The approach combines the 

results obtained after applying a variety of variable filtering methods. The aim of this 

method is to diminish the multiple comparisons problem, while avoiding the arbitrariness 

of the choice of a pre-specified filtering method.  

We showed with a limited set of simulations and an application that it does not seem 

feasible to identify a universally optimal filtering method, i.e., a single filtering strategy 

that helps identify the largest number of truly differentially expressed variables under all 

circumstances. Also, we showed with simulated and real data that the sets of variables 

identified applying filtering methods with different stringency are not necessarily heavily 

overlapping, therefore indicating the possible advantage of using a method that combines 
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the results obtained from multiple analyses utilizing different filtering strategies over a 

method that attempts to identify the single best filtering method. 

Simulation results showed that even though FEVS could be more sensitive than no 

filtering for moderate and large sample sizes, the greatest gains in terms of sensitivity 

were obtained by FEVS when the sample size was small. This is to be expected with 

class-independent screening based on total variation when the intraclass variation is the 

same for null and differentially expressed variables: mean effects large enough to be 

affected by the screening will have, with large sample sizes, such high power that they 

would be identified even if there was no screening.  On the other hand, if differentially 

expressed variables have larger intraclass variability than the null hypothesis variables, 

then screening and FEVS would identify more of these variables even with large sample 

sizes.  It is interesting to note that using a large data set of breast cancer samples and 

comparing low to high grade tumors or ER status, FEVS identified a larger number of 

differentially expressed genes compared to no filtering, most of which were previously 

identified by other microarray studies as being related to tumor grade or ER status, 

respectively.  

In this paper we restricted our attention to two-class comparisons in the presentation 

of the method and both in the simulations and in the example using real data.  However, 

FEVS is based on a multivariate permutation procedure [12] and can therefore be used in 

all the situations in which multivariate permutation methods are applicable, which 

include, besides unpaired or paired two-group comparisons, also K-group comparisons, 

linear regression with one independent variable, and survival analysis. 
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Any class-independent filtering ranking-statistics can be used to rank the variables 

when using FEVS. We used the interquartile range in all of the class-independent FEVS 

examples, which was previously suggested as a good choice [17].  We also considered 

two other filtering ranking-statistics, the variance and the 95th minus 5th percentile, 

obtaining very similar results to those presented for the simulated and real data (results 

not shown). In principle, the FEVS method could be used to combine filtering methods 

based on different filtering ranking-statistics. We did not explore the performance of such 

a strategy, which would be more cumbersome from a computational point of view.  In 

addition, it is not obvious that it would prove to be useful in practice given the similarity 

of the results that we observed using different filtering ranking-statistics. 

An approach with some relationship to FEVS is DEDS (Differential Expression via 

Distance Synthesis, [18]).  That approach was proposed to synthesize different statistics 

that measure the same quantity of interest, controlling the false discovery rate with a 

permutation-based algorithm. The idea behind DEDS is to identify the variables that rank 

high according to all statistics, therefore using the concept of an “intersection”.  FEVS 

looks instead for the “union” of the variables identified by different filtering methods. In 

principle, FEVS also could be used to combine the results obtained using different test 

statistics instead of using different filtering methods.  

Other approaches that have some similarity with FEVS are the data-driven weighted 

procedures for the control of the false discovery rate (expected value of the proportion of 

false discoveries) [19] and the therein reviewed (data-driven) weighted methods for 

familywise error control. In [19] the proposed weights are the total variances of the 

variables and the procedures rely on univariate p-values rather than using multivariate 
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permutation-based methods.  Similarly to our simulation results, they report better 

performance of their method in terms of sensitivity when the sample size is small.  

Others have considered class-dependent methods for filtering [20, 21].  We also 

explored class-dependent filtering methods with FEVS. Note that with class-dependent 

filtering, the equality in equation (2.2) would no longer hold, and would be expected to 

be the inequality <.  This would guarantee the correct error rates for FEVS, but would 

reduce the sensitivity of the method.  Simulations (not shown) verified that there was not 

any clear benefit from the use of class-dependent filtering methods; when compared to a 

class-independent FEVS, neither a larger number of variables was identified, nor did the 

variables included in the lists derived with the class-dependent filtering exhibit a larger 

mean difference between classes.  

 We presented the FEVS method limited to the case in which the number of false 

discoveries is controlled, but the method can be extended to control approximately the 

proportion of false discoveries, modifying the algorithm proposed by Korn et al. [12] in a 

similar way to what was proposed in this paper for the control of the number of false 

positives [22].  One would expect gains in the numbers of identified variables as was seen 

for the results presented in this paper for controlling the number of false discoveries.  
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Table 1.  Global null simulation results. Proportion of simulations with number of false 

positives greater than u (nominal value=0.05). 
 
 n=5 n=20 n=50 
Method u=0 u=10 u=0 u=10 u=0 u=10 
FEVS 0.0461 0.0446 0.0481 0.0489 0.0495 0.0540 
0% (No filtering) 0.0463 0.0447 0.0555 0.0492 0.0515 0.0502 
50% 0.0463 0.0442 0.0503 0.0516 0.0512 0.0507 
90% 0.0483 0.0450 0.0459 0.0538 0.0471 0.0519 
Longest List (Naïve filtering) 0.1766 0.2239 0.2082 0.2604 0.2149 0.2614 

 

Note: The expression of 50,000 variables for two groups of 5, 20 and 50 samples each (n) was simulated 

independently, as described in Section 3. u is the number of false discoveries allowed for in each analysis. 

FEVS is the filtering enhanced variable selection method proposed in this paper. “0% (No filtering)” is the 

method in which data are not filtered; “50%” and “90%” refer, respectively, to the methods in which 50% 

and 90% of the variables are filtered out.   “Longest list” is the method in which a fixed-percentage filtering 

method is selected after considering 10 different fixed-percentage filtering methods (filtering out 0%, 10%, 

20%, …, 90% of the variables) and choosing the one that identifies the longest list of differentially 

expressed genes. 
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Table 2.  Alternative case simulation results. Average number of the 300 truly 

differentially expressed variables that are identified by the various procedures as 

differentially expressed and proportion of simulations with number of false positives 

greater than u (nominal value=0.05). 
 
 n=5 n=20 n=50 
 Independent Correlated Independent Correlated Independent Correlated 
Method  u=0 u=10 u=0 u=10 u=0 u=10 u=0 u=10 u=0 u=10 u=0 u=10 
FEVS 43.865 

.0452 
138.91 
.0426 

46.55 
.0440 

136.13 
.0432 

235.91 
.0510 

263.52 
.0229 

236.91 
.0524 

261.23 
.0282 

282.18 
.0450 

292.40 
.0197 

282.08 
.0475 

291.75 
.0245 

 
0% 13.63 

.0476 
98.32 
.0475 

15.06 
.0450 

97.97 
.0491 

233.54 
.0549 

263.75 
.0456 

234.08 
.0493 

263.02 
.0523 

281.90 
.0499 

291.96 
.0440 

281.63 
.0482 

291.37 
.0428 

 
50% 15.27 

.0470 
105.10 
.0489 

16.82 
.0456 

104.65 
.0463 

235.09 
.0513 

262.22 
.0446 

235.51 
.0492 

262.15 
.0450 

277.49 
.0502 

286.41 
.0437 

277.20 
.0509 

286.29 
.0458 

 
90% 27.90 

.0454 
136.43 
.0441 

30.46 
.0453 

134.63 
.0459 

214.65 
.0485 

225.72 
.0390 

213.33 
.0491 

226.68 
.0427 

233.14   
.0457 

236.75 
.0375 

232.85 
.0514 

235.00 
.0388 

 
97.5% 45.71 

.0468 
132.20 
.0376 

48.93 
.0450 

129.28 
.0441 

169.50 
.0450 

173.03 
.0078 

169.49 
.0502 

171.56 
.0312 

179.63 
.0440 

180.89 
.0193 

179.66 
.0462  

180.56 
.0298 

 
 
 
Note: Expression profiles consisting of 50,000 variables for two groups of 5, 20 or 50 samples each (n) 

were generated as described in Section 3:  independently for columns marked “independent” and with a 

block exchangeable correlation structure for columns marked “correlated”. u is the number of false 

discoveries allowed for by each algorithm. The filtering methods are indicated with the same terminology 

used in Table 1. For each pair of rows, the number in the top row is the average number of truly 

differentially expressed variables that were identified, and the number in the bottom row is the proportion 

of simulations in which the number of false positives exceeded u. 
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Table 3.  Number of the 100 truly differentially expressed variables identified as 

differentially expressed. 

 
 
 n=5 n=20 n=50 
 
 
Method 

Total Identified 
from 
Set 1 

Identified 
from 
Set 2 

Total Identified 
from 
Set 1 

Identified 
from 
Set 2 

Total Identified 
from 
Set 1 

Identified 
from 
Set 2 

FEVS 77.78 34.25 43.52 84.19 44.94 39.25 80.01 45.38 34.63 
0% 62.58 45.46 17.12 77.26 47.86 29.40 78.25 47.54 30.71 
50% 70.61 47.71 22.90 32.92 0.00 32.92 33.54 0.00 33.54 
90% 28.02 0.00 28.02 37.01 0.00 37.01 28.08 0.00 28.08 
97.5% 37.28 0.00 37.28 35.79 0.00 35.79 17.90 0.00 17.90 

 

Note: two sets of 50 differentially expressed variables out of 50,000 were simulated independently for two 

groups of 5, 20 and 50 samples each (n), as described in Section 3. The first set contained variables with 

small mean shifts and small intraclass variability, while the second set contained variables with bigger 

mean shifts and bigger intraclass variability. All methods were controlling for u=0 errors. The filtering 

methods are indicated with the same terminology used in Table 1. 
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Table 4. Number of genes identified as differentially expressed using various filtering 

strategies, allowing for u false positives for two comparisons involving breast cancer 

specimens of Sotiriou et al. [15]. 
 
 
 Tumor Grade 

(1 or 2 vs. 3) 
Tumor ER status 

(positive vs. negative) 
Method u=0 u=10 u=0 u=10 
FEVS 20 124 199 472 
0% 6 94 172 503 
10% 7 99 174 501 
20% 8 101 177 502 
30% 9 106 180 494 
40% 10 106 186 483 
50% 13 114 180 466 
60% 14 115 179 443 
70% 13 110 172 414 
80% 14 106 160 350 
90% 19 98 136 247 

 
 
Note:  The fixed-percentage filtering methods with which the highest numbers of genes were identified are 

indicated in bold. The same terminology of Table 1 is used to indicate the filtering methods. 
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Figure 1. Proportion of truly differentially expressed genes, as a function of mean shift, 

identified by different filtering methods.
 

Note: n is the number of samples per group and u is the number of false discoveries allowed for in each 

analysis. The simulation setting is the same as that described for Table 2 (for n=5, 20 and 50 sample per 

group), with all the variables begin independent. The results indicated by a “0” are those obtained with no 

filtering, those indicated with an “X”  are those from the filtering enhanced variable selection, while “50”, 

“90” and “97.5” are those corresponding, respectively, to the 50%, 90% and 97.5% fixed-percentage 

filtering. 
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