
INTRODUCTION 

An important issue that arises when planning a mi-
croarray experiment is whether the RNA derived from the
samples included in the study should be pooled or
should be hybridized individually on the arrays. Al-
though some kind of pooling is inevitable when the RNA
quantity obtained from individual samples is insufficient
to gain reliable array results (1) or linear amplification is
not considered, many investigators wonder if pooling
samples is advantageous even when RNA quantity is not
limiting. Pooling is often perceived in preclinical studies
as an effective way to decrease the number of expensive
microarray hybridizations required by reducing biologi-
cal variability (2, 3).

A frequent aim of microarray experiments is to iden-
tify genes that are differentially expressed between two
or more prespecified classes, ie, phenotypes or experi-
mental conditions (4). In this setting, pooling of samples
can be useful, but in order to properly draw conclusions
beyond the specific experiment to populations from
which the samples were drawn, proper experimental de-
sign must be used, with multiple independent pools for
each class, each composed of different units (4, 5). 

Several recent papers have addressed statistical de-
sign considerations for pooling samples in microarray ex-
periments. Kendziorski et al (6) and Shih et al (7) gave

sample size formulae for pooled designs for class com-
parison experiments showing that a comparable preci-
sion or power to a non-pooled design can be obtained
by a pooled design with fewer arrays, but increasing the
number of individual samples. They also noted that pool-
ing is more effective when the gene variability between
samples (biological variability) is considerably larger
than the variability across replicated arrays from the
same sample (technical variability). Other recent studies
have directly evaluated the impact of pooling on the
identification of differentially expressed genes between
two classes. In particular, Kendziorski and colleagues (8)
used Affymetrix arrays in a large study measuring gene
expression of both individual samples and independent
pools from inbred rats in two different diet conditions,
obtaining some technical replicates as well. Their results
indicated that pooling reduces overall variability, even
though, similarly to Han et al (9), they found that for
many genes the technical variability was greater than the
biological variability. Others have tried to address the
problem of differences in inference with pools and indi-
vidual samples by comparing sizes of gene lists (10, 11),
but none of these experiments was properly designed for
its aim. In this paper we focused on the utility of pooling
in microarray experiments using cell lines to identify
genes differentially expressed between two experimental
conditions. We designed a microarray experiment using
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independent individual and pooled samples of RNA hy-
bridized on Affymetrix GeneChip Arrays (Affymetrix,
Santa Clara, CA, USA) to assess the differences in gene
expression following selective estrogen receptor modula-
tor treatment of the MCF-7 breast cancer cell line. In this
situation, the “biological” variability refers to replicate
cultures of a single cell line. We used an equal number
of arrays for independent and pooled samples, while
three times as many individual samples were needed to
obtain the pools. We performed a separate analysis of
pooled and individual samples and focused on the differ-
ences in the lists of differentially expressed probe sets.
We list possible reasons to explain our findings and dis-
cuss the utility of pooling in microarray experiments
when using RNA extracted from repeated cultures of a
cell line and in other settings in which the within-class
biological variability is expected to be very small. 

MATERIALS AND METHODS

Sample preparation

Separate aliquots from the same frozen batch of
MCF-7 breast cancer cell line were thawed, amplified,

and split into six cultures in three successive weeks. At
each time point, cell line samples were treated in tripli-
cate with 10-7M of the antiestrogen 4-hydroxytoremifene
(4-OH-TOR) or with its solvent. Cultures were grown in-
dependently for nine days and then harvested; RNA was
extracted, quantified, checked for integrity and labeled
independently for each of the cultures. In the first week
individual samples and pools were hybridized on arrays.
In the second and third weeks the experiment was inde-
pendently repeated, but only the pools obtained from
each of the three cell line cultures were hybridized. Fig-
ure 1 presents a schematic of the experimental design.

Affymetrix GeneChip hybridization and image acquisition

Each target was prepared as described by Borrello et
al (12) and hybridized on Affymetrix HG-U133
GeneChip Set (HG-U133A and HG-U133B). Images
from the second scan, performed after antibody amplifi-
cation of the signal at the end of the washing procedure,
were used in all the subsequent elaborations. 

Data preprocessing and normalization 

For our primary analyses, intensity values for each probe

Fig. 1 - Experimental design showing how pools and individual samples, treated with toremifene (B) or with its solvent (A, untreated samples), were
obtained.
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set were summarized and normalized with robust multichip
analysis (RMA) (13), using the default parameters of RMA
function from the Bioconductor Affy package (14). Individ-
ual and pooled arrays from both experimental conditions
were processed together, merging HG-U133A and HG-
U133B arrays after normalization. Similar to the approach
described by Kendziorski et al (8), all 44,928 probe sets in-
cluded in the HG-U133 Set were used in the analysis. 

To check the consistency of the results under differ-
ent preprocessing and data filtering methods, we also ap-
plied a filtering criterion in which intensity values with
an Affymetrix “Absent” detection call (15) were treated as
missing, and intensities were thresholded to a minimum
value of 100. Screening of the genes based on minimum
variation of log ratios across (n) arrays was also consid-
ered; any probe set for which the variance (σ2) was not
significantly higher than the median probe-set-specific
variance of all probe sets (σ2

med) at a 0.01 significance
level was filtered out. (The statistic, (n-1) σ2/σ2

med, was
assumed to have an approximate chi-square distribution
with n-1 degrees of freedom) (16).

We also obtained intensity signals from Affymetrix
Microarray Suite Version 5.0 software (MAS5) (15), scal-
ing all images to a value of 500 and applying the same
filtering criteria as described above. All intensities were
log2 transformed.

Statistical methods and data analysis

Probe sets differentially expressed between treated
and untreated samples were identified separately for the
individual-sample and pooled-sample arrays. Probe sets
with a p value less than 0.001 from a univariate two-
sample pooled variance t test were considered as differ-
entially expressed. 

Overall within-class variance can be estimated sepa-
rately for each probe set using the unbiased estimator 
σ̂ 2 = Σ

i
Σ
j
(Xij – X–j)2 / (n1 - n2 - 2), where Xij is the intensity

measurement of the ith sample in the jth class for a spe-
cific probe set and X–j is the mean intensity for that probe
set in the class j; n1 and n2 are the number of samples in
each class. σ̂i

2 and σ̂p
2 are the separate estimates obtained

Fig. 2 - Mean log fold
changes for individuals
and pools from RMA
analysis. a) All probe sets.
b) Probe sets differentially
expressed in both IA and
PA. c) Probe sets differen-
tially expressed in IA but
not in PA. d) Probe sets
differentially expressed in
PA but not in IA.
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independently from individual and pool arrays.
Major assumptions underlying pooling include that

the gene expression of the pool equals the average ex-
pression of the individual samples comprising the pool
and that the biological variability in the pool is reduced
by a factor equal to the number of samples included in
the pool (r), while the technical variability is unaffected. 

Let σb
2 be the biological variance, ie, the variance

between true expression of independent individual sam-
ples and σ t

2 be the technical variance, ie, the variance
between replicate arrays of the same sample. Overall
within-class gene-specific variance is σ i

2=σb
2 + σ t

2 for
individual samples, while it is σp

2=σb
2 /r+ σ t

2 for pools.
Biological and technical variance can then be esti-

mated with the method of moments, according to the
formulae σ̂b

2 = r / (r - 1) (σ̂ i
2 - σ̂ p

2) and σ̂ t
2 = r / (r - 1) σ̂p

2 -
1/(r - 1)σ̂ i

2. With estimates of σ i
2 and σp

2, power can be
calculated using the formulae proposed by Shih et al (7). 

For a fixed number of arrays and a given significance
level, we would expect a pooled design to have greater
power because the “biological” variability is reduced.
Higher power translates into longer lists of differentially
expressed genes. 

All analyses were carried out using R statistical lan-
guage (17) and BRB Array Tools (16).

RESULTS

Quality control of the experiment

Standard metrics for quality control of Affymetrix ar-
rays (18) indicated that the array hybridizations were of

good quality. Background signal, row noise score, per-
centage of Absent Calls and spike-in behavior were con-
sistent across arrays. Concordance between biological
replicates was assessed using both graphical and analyti-
cal assessments. 

Differentially expressed probe sets

The number of probe sets found differentially ex-
pressed was 1257 using individual samples (individual
analysis, denoted as IA) and 413 using pools (pooled
analysis, denoted as PA). One hundred eighty-nine of the
significant probe sets were shared by the two analyses
(46% of those from PA and 15% from IA). The aforemen-
tioned results were based on RMA non-filtered intensi-
ties. Similar results, both in terms of the number of differ-
entially expressed probe sets and in terms of the percent-
age of differentially expressed overlapping probe sets be-
tween the two analyses, were found using MAS5 intensi-
ties and different preprocessing methods as described in
“Materials and Methods”. Better agreement between
gene lists from PA and IA was found when we screened
out low-variance probe sets (increasing pool overlap to
56% with RMA and to 68% with MAS5 intensities,
where about half as many genes were found to be differ-
entially expressed compared to the RMA analysis). The
large discrepancy in list length was not a function of the
method used to generate the lists. Similar results were
obtained when identifying differentially expressed genes
by the methods described in (19) and (20).

Average intensities of differentially expressed probe
sets from PA and IA analyses were very concordant, both
in treated and untreated classes. This was also true for the

Fig. 3 - Comparison of some of the signifi-
cantly enriched biological themes common
to IA and PA. For each category the –Log10
value of the EASE score is reported. EASE
score is a variant of the Fisher exact test and
is used to find within a gene list the most
overrepresented gene categories. Numbers
in brackets represent the number of DE
genes in the IA and PA lists, respectively, for
each category.
In the figure only some of the significantly
enriched categories common to the two
analyses are reported. Roughly the same
number of categories were identified as sig-
nificantly enriched with IA and PA, with
some categories exclusive to one of the two
analyses. Those apparently relevant to the
biological problem are present both in IA
and PA, although for PA each category has a
lower number of genes.
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non-overlapping differentially expressed probe sets from
the two analyses. Fold changes between treated and un-
treated samples showed a good concordance, as shown
in Figure 2a, where slight shrinkage of the fold changes
of the pools can be observed. Non-overlapping probe
sets maintained this characteristic, but the shrinkage of
the fold changes was more evident for the probe sets
unique to IA, where probes with high and concordant
fold changes are missed by the pooled analysis (Fig. 2c-
d). Overlapping probe sets did not present small fold
changes (Fig. 2b). In general, the PA gene list contained
mostly probe sets down-modulated in untreated samples,
while up- and down-modulated probe sets found in the
IA gene list were more balanced. 

EASE (21) was used to identify enriched biological
themes within gene lists. Comparison of biological cate-
gories revealed a similar ranking of significantly repre-
sented themes within the lists obtained from IA and PA.
In the IA analysis, 86 of the 604 categories represented
in the lists of differentially expressed genes were consid-
ered significantly enriched (Fisher exact test, p value less
than 0.01), while for PA 81 categories were significantly
enriched among the 281 represented. All but 8 of the
categories found with PA were present also in the IA lists,
while the overlap of significantly enriched categories was
limited to 53. For most of the common categories (46/53)
the number of differentially expressed genes in each
group was greater in IA than in PA. Each biological cate-
gory can contain from just a few to hundreds of genes;
exclusive categories tended to contain fewer genes com-
pared to categories shared by IA and PA and they repre-
sented functions not obviously known to be related to se-
lective estrogen receptor modulator treatment.

Figure 3 reports the EASE scores for some of the sig-
nificantly overexpressed functional categories common
to the two gene lists. The list of the differentially ex-
pressed genes from IA and PA and the complete EASE
outputs are available in the “Supplementary Material”.

Estimation of individual and pool variability and of tech-
nical and biological variability

Sixty-two percent of the probe sets showed higher
within-class variance estimates when based on individ-
ual-sample arrays compared to pooled-sample arrays.
The estimated biological variance was negative for this
62% of the probe sets while the estimated technical vari-
ance was negative for 10% of the probe sets. (Method-of-
moments estimates of variance may be negative when
the true variance is near zero). The estimated technical
variability was higher than the biological variability for
75% of probe sets, but this percentage was increased to
94% for probe sets identified as differentially expressed
in IA and reduced to 58% for genes identified as differ-
entially expressed in PA. Similar results were observed
using other preprocessing methods.

Roughly similar proportions of probe sets for which
individual samples had a higher variability than pools
were obtained when variances were estimated separately
for treated and untreated samples, but the identities of
the probe sets having higher variance in individuals dif-
fered between the two treatment classes (with an overlap
of less than half of the probe sets).

DISCUSSION

In this paper we focused on the utility of pooling in
microarray experiments using the MCF-7 breast cancer
cell line to identify genes differentially expressed follow-
ing selective estrogen receptor modulator treatment. We
designed an experiment in which both individual and
pooled samples were measured, using the same number
of Affymetrix arrays.

Irrespective of low-level analysis options, we found
the number of differentially expressed probe sets from PA
to be smaller than from IA (usually less than a third).
Even if the number of the arrays was equal in the two ex-
periments, more work and a greater number of individual
samples were required to create the pools. In our experi-
mental setting, in which the number of arrays and the
significance level were fixed, theoretical arguments
would indicate that the PA should have had higher pow-
er and provided a larger gene list because of the reduc-
tion in biological variance due to pooling. Nevertheless,
in our data the expected reduction in overall variance
was not observed for more than 60% of the probe sets.
Similar observations of increased variability in pools
compared to individuals were noted by Kendziorski et al
(8) and Han et al (9), who observed 30% and 50% of
genes, respectively, that did not benefit from pooling.
These two studies analyzed gene expression data from
tissues of inbred animals while our experiment used
replicate cultures of a cell line, for which an even small-
er biological variability would be expected. 

There are several possible explanations for our re-
sults. First, the variance estimates are based on few ob-
servations for each gene (six for the pools and six for the
individuals in our experiment); therefore, the estimates
may not be reliable and the expected ordering of the
variances might be reversed by chance. However, the
number of probe sets for which we observed this inver-
sion was higher than we might expect by chance. Assum-
ing no biological variability for all of the genes, we
would have expected to obtain a negative estimate of bi-
ological variability for 50% of the genes (±0.5% if genes
were assumed to be independent). Another suspect might
be the pool averaging assumption. Shih et al (7) present-
ed two interesting examples based on real cDNA and
Affymetrix data, showing that this assumption may not
hold, especially for high signals and more markedly for
Affymetrix data. Also, the results of Kendziorski et al (8)
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indicate that the pooling averaging might not be support-
ed for genes with low variability. Our results showed
some departures from the averaging assumption, the na-
ture and magnitude of which depended on data prepro-
cessing and normalization. Unlike Kendziorski et al (8)
we did not find that pools were more similar to averages
of the samples comprising them than to other samples. A
further potential explanation for the failure in variance
reduction in pools for most genes might be related to an
increase in technical variability due to the additional ex-
perimental step of pooling samples. A possible limitation
of our study was that pools were obtained in different
weeks while individuals were all from the first week.
However, when comparing individual samples with the
pools containing them, we did not find the individuals to
be more similar to their pools than to the pools from dif-
ferent weeks. Therefore, we do not believe that a week
effect played an important role. 

One interesting difference that we found between IA
and PA was that probe sets identified in IA are modulated
in both directions (up and down), while PA mainly con-
tains down-modulated probe sets. In a separate microar-
ray experiment performed by us, which involved paired
samples from 11 women treated with toremifene, preop-
erative core-needle biopsies of pretreatment tumor tissue
were compared to posttreatment tumor tissue obtained at
surgery, and almost the same number of up- and down-
modulated genes were observed (data not shown, manu-
script in preparation). If the findings of this small, 11-pa-
tient study were to hold in general, this would suggest
that IA results might resemble the toremifene-induced
gene modulation better than PA results.

Analyzing data from our microarray experiment with
pooled and individual samples, we found unexpected re-
sults, which question the utility of pooling in experiments
with small biological variability. Further experiments are
needed to isolate possible biases or sources of additional

variability in microarray experiments using pooling. If
our findings in this paper hold up in further independent
studies, our conclusion would be that pooling samples in
microarray experiments where the biological variability
is expected to be small is not likely to be very helpful,
and could even diminish one’s ability to identify differen-
tially expressed genes while requiring more experimental
time and samples. 
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