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A two-stage Bayesian design for
co-development of new drugs and
companion diagnostics
Stella Wanjugu Karuri and Richard Simon*†

Most new drug development in oncology is based on targeting specific molecules. Genomic profiles and deregu-
lated drug targets vary from patient to patient making new treatments likely to benefit only a subset of patients
traditionally grouped in the same clinical trials. Predictive biomarkers are being developed to identify patients
who are most likely to benefit from a particular treatment; however, their biological basis is not always conclu-
sive. The inclusion of marker-negative patients in a trial is therefore sometimes necessary for a more informative
evaluation of the therapy. In this paper, we present a two-stage Bayesian design that includes both marker-
positive and marker-negative patients in a clinical trial. We formulate a family of prior distributions that
represent the degree of a priori confidence in the predictive biomarker. To avoid exposing patients to a treat-
ment to which they may not be expected to benefit, we perform an interim analysis that may stop accrual of
marker-negative patients or accrual of all patients. We demonstrate with simulations that the design and priors
used control type I errors, give adequate power, and enable the early futility analysis of test-negative patients to
be based on prior specification on the strength of evidence in the biomarker. Copyright © 2012 John Wiley &
Sons, Ltd.
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1. Introduction

A majority of new drug development in oncology is molecular target based. Because of the heterogeneity
of tumors of a primary site, treatment benefit is likely for only a subset of patients in clinical trials based
on primary site. A typical example is Herceptin (Genentech Inc., San Francisco, CA), which is used for
the treatment of breast cancer patients whose tumors overexpress the HER2 gene. Predictive biomarkers
are a class of biomarkers that identify patients who are likely to benefit from a particular treatment.
Establishing medical utility of a previously developed candidate predictive biomarker generally requires
a clinical trial in which treatment assignment is randomized between the treatment and control [1]. One
design strategy for using a predictive biomarker is the enrichment design [2], where marker-negative
patients are excluded from the study. Excluding marker-negative patients from the trial has been shown
to be more efficient than standard designs [3, 4] where the treatment effect in marker-negative patients
is substantially less than in marker-positive patients and the prevalence of the marker positives is less
than 50%. In many cases, however, the biological basis for believing that the candidate biomarker will
properly distinguish those patients who benefit from the new treatment from those who will not is not
conclusive [1], and it is desirable to include marker-negative patients in the trial [5, 6].

Wang et al. [7] developed a two-stage adaptive design that includes marker-positive and marker-
negative patients but provides for termination of recruitment to the marker-negative stratum based on
an interim analysis. Freidlin and Simon [8] and Jiang et al. [9] have proposed other adaptive designs.
Here, we use a Bayesian formulation to provide a flexible framework for representing the degree of prior
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confidence in the biomarker. This degree of confidence may range widely in different clinical develop-
ment contexts. In some cases, there will be relatively strong confidence in the biomarker but not strong
enough to exclude marker-negative patients, or regulators may insist on the inclusion of marker-negative
patients to obtain data supporting the approval of the test. In such a trial, however, it will be important
to avoid including too many marker-negative patients and exposing them to a treatment to which they
are not expected to benefit based on prior evidence. Although Bayesian methods provide flexibility for
incorporating prior confidence in the candidate predictive biomarker, a major challenge is developing
a Bayesian formulation that also provides robust inferences that meet the standards for conventional
frequentist phase III clinical trials.

Section 2 details our formulation of the problem. A vast body of work is available on prior specifica-
tion with regard to clinical trials [10–13]. We describe a class of two-point priors to describe treatment
effect and how it varies based on biomarker value. We utilize these simple two-point priors to facili-
tate understanding on the operating characteristics of the designs we propose and indicate later how the
designs can be extended to a broader set of priors. We used a modified Bayesian version of the two-stage
design of Wang et al. [7] in Section 3. Unlike Berry’s [10] approach where decisions on patient recruit-
ment after the interim stage are made via the predictive distribution, we use the posterior distributions
of treatment effect within biomarker strata. Simulation studies in Section 4 enable an empirical study of
type I error, power, and sample size. In Section 6, we discuss results, suggest extensions, and provide
concluding remarks.

2. Methodology

We take survival as the endpoint and assume the data to follow a proportional hazard model within the
marker-positive and marker-negative strata separately

log.h.t/=h0.t//D

�
ıC; for test-positive patients
ı�; for test-negative patients,

(1)

where ıC and ı� are the treatment effects in the test-positive and test-negative patients, respectively.
Given the data D and the test-positive and test-negative treatment effects ıC and ı�, the observed
treatment effects are taken to be independent and approximately Normal:

OıCjıC;D �N.ıC; 4=EC/; (2)

Oı�jı�;D �N.ı�; 4=E�/: (3)

The distribution assumption are based on the approximation of the log-rank statistics and its asymptotic
distribution. The parameters EC and E� are the number of events in the test-positive and test-negative
patients at the time of analysis. Prior information on the mean treatment effects ıC and ı� is specified
via a distribution denoted as P.ıC; ı�/.

2.1. Prior distributions

Although we use a Bayesian formulation, because we are proposing a phase III trial design that may be
used for regulatory or practice standard decision making, the type I error, the error of concluding a treat-
ment work when it does not, must be controlled. Three hypotheses are relevant when using a predictive
biomarker:

1. H0 W ıC D 0 denoted as H0C,
2. H0 W ı� D 0 denoted as H0�, and
3. H0 W ıC D ı� D 0 denoted as H0C�.

We specify a four-point prior distribution with mass on the points f.ıC; ı�/ D .0; 0/; .ı�; 0/; .0; ı�/,
.ı�; ı�/g, where ı� is the log-hazard ratio for treatment effect which is of clinical importance to detect.
The parameter ı� is derived from prior preclinical, phase I, or phase II study where the treatment has
shown promise of efficacy. In frequentist designs, the number of events in the trial are planned to detect
an alternative with a log-hazard ratio of ı� for a specific power and significance level. ı� is therefore a
natural choice for an alternative outcome to the marginal null.
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We parameterize the prior as follows:

P.ıC D 0jı� D ı�/D r2; (4)

P.ı� D 0jıC D ı�/D r1; (5)

P.ıC D 0; ı� D 0/D p00: (6)

The parameter r2 represents the prior probability of having no treatment effect in the test positives when
a treatment effect does exist in the test negatives. The parameter r1 represents the prior probability of
having no treatment effect in the test negatives when a treatment effect does exist in the positives. This
parametrization offers two key advantages. The first being that the overall type I error for H0C� is con-
trolled by p00. The other advantage is that prior information on the classifier can be incorporated through
specification of r1 and r2. For targeted therapy, confidence in the classifier means belief that a treatment
effect exists in test-positive patients only. A large value of r1 and a small value for r2 would represent
this belief. Conversely, little or no confidence in the classifier would imply that if a treatment effect
exists, it exists in both test-positive and test-negative patients; small values of r1 and r2 would represent
such a belief.

The posterior probabilities related to the formulated hypothesis can be shown as follows
(Appendix A):

P.ıC D 0j OıC; Oı�/D

�
1C

aq1Lı�;0C aLı�;ı�
q00L0;0C aq2L0;ı�

��1
; (7)

P.ı� D 0j OıC; Oı�/D

�
1C

aq2L0;ı� C aLı�;ı�
q00L0;0C aq1Lı�;0

��1
; (8)

P.ıC D 0; ı� D 0j OıC; Oı�/D

�
1C

aq2L0;ı� C aq1Lı�;0C aLı�;ı�
q00L0;0

��1
; (9)

where a D .1 � r1/.1 � r2/=.1 � r1r2/, q1 D r1=.1 � r1/, q2 D r2=.1 � r2/, q00 D p00=.1 � p00/,
and Li;j D P. OıC; Oı�jıC D i; ı� D j / denote the marginal conditional probabilities of the bivariate
Normal density given in Equation (3). Complete a priori confidence in the utility of the classifier means
r1 ! 1 and r2 ! 0, and the posterior probability of the treatment failing in the test negatives given
in Equation (8) will be large and unaffected by p00. However, the posterior probability of the treatment
failing in the test positives in Equation (7) will be small if p00 is small and large if p00 is large. Complete
lack of confidence in the classifier means r1 ! 0 and r2 ! 0; the treatment is equally likely to work
in the test positives and test negatives, and the posterior probabilities given in Equations (7) and (8) are
approximately equal. Under these conditions, the posterior probability of the treatment having no effect
in the test negatives and test positives given in Equation (9) is largely determined by the values of p00
and the data.

Values for r1 and r2 are set by the investigator based on their belief in the classifier. However, p00 is
chosen to control type I error. The simulation exercise in Section 4 outlines a method of obtaining p00
by examining the empirical probabilities given in Equations (7)–(9).

3. Trial design

We utilize a Bayesian version of the adaptive design of Wang et al. [7] by considering a two-stage design
where the posterior distribution of treatment effects within the marker-positive and marker-negative
strata based on an interim analysis of first-stage data is used to make decisions on patient recruitment and
trial progression. The trial is prospectively sized for detecting a treatment effect in test-positive patients
using a target treatment effect of ı�, a power of .1�ˇ/, and a two-sided ˛ significance level. The required
number of test-positive events is

EC D .4.´˛ C ´ˇ /
2/=.ı2�/:
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For a nonprognostic classifier, the expected number of test-negative events is approximately

E� D ..1� prev/=prev/EC;

where prev denotes the prevalence of marker positivity. We size the clinical trial on the basis of the num-
ber of observed events in the test-positive stratum at the final analysis. The prevalence of positivity is
important as it determines the rate of accrual of marker-negative patients relative to marker-positive
patients. Prevalence therefore influences the operating characteristics of the design, particularly the
power of detecting a treatment effect in the test-negative stratum. Prevalence of marker positivity is
usually available prior to initiation of phase III trials from archival tissues from patients with the
target disease.

At the interim analysis, a proportion t of EC and E� events are used to estimate the treatment effects,
and the posterior probabilities given in Equations (7)–(9) are calculated. For a particular threshold value
TH , the following sequence of actions are taken:

1. Stop the trial if P.ıC D 0j OıC; Oı�/> TH at the interim stage;
2. stop negative recruitment at the interim stage if P.ı� D 0j OıC; Oı�/> TH ; or
3. continue recruitment of both test-positive and test-negative patients.

The first course of action is necessitated by the fact that the trial therapy is a targeted therapy. If the
treatment is ineffective in test-positive patients, it is unlikely to be effective in the test-negative patients
and the trial should be stopped. The next course of action ensures that recruitment is stopped for test-
negative patients if the therapy is ineffective in this subpopulation. To reduce the number of parameters
in the design, we use the same TH value. However, different values of TH can be used in steps 1 and 2.
Ideally, the threshold should be a large value. However, a very large value will reduce the effectiveness
of futility monitoring at the interim stage, which may compromise patient safety. For example, if the
treatment is indeed ineffective in the marker-positive and marker-negative patients, having a threshold
value close to one reduces the probability of stopping the trial, which results in the continued accrual
of patients, exposing patients to toxic side effects of an ineffective treatment. We use a sequence of
TH values to assess the performance characteristic of the design. At the final analysis, the hypothesis
H0C is rejected if P.ıC D 0j OıC; Oı�/ < �, where � is some small value. Similarly, H0� is rejected if
P.ı� D 0j OıC; Oı�/ < �. We use � D 0:05.

4. Simulation study

Using prevalence values of 25% and 50% for marker-positive patients, we simulated data under the
following scenarios:

1. No treatment effect, with .ıC; ı�/D .0; 0/;
2. An observed treatment effect in test-positive patients only with .ıC; ı�/D .ı�; 0/;
3. The unlikely scenario where there is a treatment effect in the test-negative patients but none in the

test-positive patients, with .ıC; ı�/D .0; ı�/; and
4. An observed treatment effect in the test-positive and test-negative patients with .ıC; ı�/D .ı�; ı�/,

We used values of ı� D log.1=2/ and ı� D log.2=3/, which correspond to a one-half and one-third
reduction in hazard attributed to the treatment. Most phase III studies in oncology are designed to detect
a reduction in hazard of approximately between 25% and 33% [14–17]. A 50% reduction in hazard
is considered large but has been observed in a predictive biomarker study [18]. For a stratified design
with ı� D log.2=3/, the number of events required for the test positives is EC D 256. For prevalence
of 50% and 25%, this implies E� D 256 and E� D 768, respectively. If ı� D log.1=2/, the number
of events for test positives is EC D 88 with resulting E� D 88 and E� D 164 for a 50% and 25%
prevalence, respectively.

The asymptotic distribution of the log-rank statistics at the interim and final stages is bivariate Normal
with unit variances and correlation equal to � D

p
t D

p
E1=E2, where E1 and E2 are the numbers

of events in the interim and final stage, respectively [19]. Consequently, simulations for the observed
test-positive effects at the interim and final stage can be obtained using a bivariate Normal distribution,
where the interim and final effects for the test positives have a correlation �D

p
t and variances 4=.tEC/

and 4=EC, respectively. Similarly, the observed effects for the test negatives can be simulated indepen-
dently using a bivariate Normal distribution with correlation equal to �D

p
t and variances 4=.tE�/ and
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4=E�, respectively. We simulated data representing 10,000 trial effects at the interim and final stages
for threshold values of TH D f0:7; 0:8; 0:9g and proportions of t D f20%; 25%; 33:3%; 50%g events in
the interim stage. We present analysis and results for TH D 0:8, which yields intermediate results and
ı� D log.2=3/. We give the results with other TH values in Appendix B for t D 0:2; 0:5.

We carried out prior specification by estimating for a grid of r1, r2, and p00 values, the proportion of
trials in which the overall null H0C� was rejected using simulations under all scenarios. The quantities
r1 and r2 should be based on the a priori evidence for the classifier, but p00 should be set to ensure that
type I errors for none of the null hypothesis H0C�, H0C, or H0� exceeds 0.05. The values examined
were r1; r2 D f0:1; 0:3; 0:5; 0:7; 0:9g, and sequence of p00 values equally spaced between 0 and 0.3. The
action of rejecting a hypothesis was taken if the posterior probability was less than 0.05.

We chose an r2 value of 0.1 for our priors as most appropriate for targeted therapy. Figure 1 gives
the proportions of trials in which H0C�, H0C, or H0� were rejected for a sequence of p00 values with
r2 D 0:1 using data simulated with ıC D ı� D 0. These proportions are estimates of the type I errors.
Among all r1 values of interest, the probability of a type I error is less than 0.05 for values of p00 greater
than or equal to 0.1. Subsequently, we chose a p00 value of 0.1 as this value provided greatest power.
We therefore considered priors with the following parametrization:

1. P1, with p00 D 0:1; r1 D 0:1; r2 D 0:1,
2. P2, with p00 D 0:1; r1 D 0:5; r2 D 0:1, and
3. P3, with p00 D 0:1; r1 D 0:9; r2 D 0:1.

The use of prior P1 is appropriate in situations when one has low confidence in the classifier. Prior P3 is
for situations with high confidence in the classier, and prior P2 provides a middle ground.

Using the trial design in Section 3, we estimated the following quantities for each scenario:

1. The proportion of trials in which H0� is rejected at the end of the trial;
2. The proportion of trials in which H0C is rejected at the end of the trial;
3. The proportion of trials in which the trial was stopped at the interim stage; and
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Figure 1. Estimated probability of rejecting H0C� , H0C, and H0� versus p00 with r2 D 0:1 for data simulated
with ıC D ı� D 0, ı� D log.2=3/, and 50% prevalence.
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4. The proportion of trials in which negative recruitment was stopped at the interim stage given that
the trial was not stopped.

We took the action of rejecting the hypothesis H0� if P.ıC D 0j OıC; Oı�/ < 0:05. Similarly, we took
the action of rejecting the hypothesis H0C if P.ı� D 0j OıC; Oı�/ < 0:05. We present the results for
ı� D log.2=3/ in Figures 2 and 3.

5. Results

The matrix plots given in Figures 2 and 3 summarize the results from the simulations. Figure 2 gives
results for simulations with 25% prevalence, whereas Figure 3 for simulations with 50% prevalence.
Rows 1–4 in the matrix plot represent the following respectively:

1. The proportion of trials in which H0� was rejected;
2. The proportion of trials in which H0C was rejected;
3. The proportion of trials in which accrual of marker-negative patients was stopped at the interim

stage; and
4. The proportion of trials in which all accrual was stopped at the interim stage.

The columns in the matrix plot represent simulation scenarios with data generated on the basis of the
following:

1. ıC D ı� D 0,
2. ıC D ı�; ı� D 0,
3. ıC D 0; ı� D ı�, and
4. ıC D ı� D ı�.

5.1. Results with 25% prevalence of marker positivity

Column 1 of Figure 2 shows results for the null simulation scenario in which ıC D ı� D 0. Subplots
of proportion of trials in which H0C and H0� were rejected show that type I error is well controlled
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Figure 2. Matrix plot with results for simulations with 25% prevalence. Solid line represents P1, dashed line P2,
and dotted line P3.
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Figure 3. Matrix plot with results for simulations with 50% prevalence. Solid line represents P1, dashed line P2,
and dotted line P3.

with estimated values not exceeding 3.5% for all three priors and, at all times, interim analysis was per-
formed. From a patient protection and cost perspective, a good design would have a high probability of
stopping the trial at the interim stage. The highest proportions of trials are stopped at the interim stage
under P1, which is the prior that conveys a lack of confidence in the classifier results. The subplot also
shows that the more data used in the interim stage, the higher the probability of stopping the trial under
the global null; however, accrual of marker-negative patients is stopped early much less frequently when
using prior P1 compared with P2 or P3.

The second column of Figure 2 shows results for the scenario in which a treatment effect exists in
the test positives only with ıC D ı�; ı� D 0. The subplot on the proportion of trials in which H0� was
rejected indicates good control of type I error for H0� for all three priors. The subplot on the proportional
of trials in which H0C was rejected indicates that all priors yield good power with values of at least 75%.
Prior P3 that conveys confidence in the classifier results in the highest power with values of at least 95%.
For patient protection and cost considerations, an appropriate design for this scenario stops accrual of
negatives at the interim stage without stopping the trial. The subplot on early termination of accrual of
negatives indicates that the prior P3 results in the highest probability of stopping accrual of negatives at
the interim stage.

The third column in Figure 2 shows results for the unlikely scenario in which a treatment effect exist
for the negatives only with ıC D 0; ı� D ı�. The subplot of proportion of trials in which H0C was
rejected indicates good control of type I error for all priors with error estimates not exceeding 3.5%.
The subplot of proportion of trials in which H0� was rejected indicates that priors P1 and P2 provide
the highest power estimates with values exceeding 90% for t D 20%, with power decreasing, the later
interim analysis is performed. This can be explained by the fact that the trial is terminated because of no
treatment effect in positives with increasing frequency for later times of analysis. This reduces the power
for rejecting H0�.

The subplots in the last column of Figure 2 show results for the scenario in which a treatment effect
exists for both the positives and the negatives, namely ıC D ı� D ı�. The subplot of the proportion
of trials in which H0� was rejected shows that P1 and P2 provide very high power for rejecting H0�

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 901–914
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and the power for P3 exceeds 80%. All priors provide high power for rejecting H0C with values greater
than 91%. The probability of stopping accrual of the negatives and stopping the trial at the interim stage
for this scenario should be low, and all three priors result in low probabilities with estimated values not
exceeding 0.17.

5.2. Results with 50% prevalence of marker positivity

The first column of Figure 3 shows results for the null scenario in which ıC D ı� D 0. With 50% preva-
lence, we also observed good control of type I error for both H0C and H0� with values not exceeding
3.5%. Just as with 25% prevalence, the prior that best supports early termination is P1, which is the prior
that conveys lack of confidence in the classifier. The probabilities of early termination of marker-negative
patients with priors P2 and P3 is reduced compared with that in Figure 2 because fewer marker-negative
patients are available for analysis with 50% prevalence of marker positivity.

The second column of Figure 3 shows results for the scenario in which a treatment effect exists only
in the test positives with ıC D ı�; ı� D 0. With 50% prevalence, the results indicate good control of
type I error for H0� with all three priors. The power for rejecting H0C is very similar to that for 25%
prevalence. Table I compares proportion of trials in which accrual of negatives was stopped early for
25% versus 50% prevalence. From the table, it is clear that a futility analysis with P3 stops negative
recruitment in at least 90% of the trials regardless of the interim analysis time or prevalence. Using prior
P1 however, the proportion of trials in which accrual of marker negatives is stopped early is substantially
reduced for 50% prevalence compared with 25% prevalence. This is also the case for prior P2 but to a
lesser degree. An important point from this scenario is that using a prior that conveys confidence in the
classifier enables an early futility analysis without loss of power or increasing the type I error.

The subplots in the third column of Figure 3 show results for the unlikely scenario in which a treatment
effect exists only in the negatives with ıC D 0; ı� D ı�. Just as in the 25% prevalence analysis, type
I error for H0C is well controlled with values not exceeding 3.5% regardless of prior used and time at
which interim analysis was performed. Power estimates for H0� are comparatively less than those from
25% prevalence, the largest difference being with prior P3. This can be attributed to the larger influence
of the prior because of the smaller number of events in the test negatives at the interim and final stage.
These phenomena also result in a higher probability of stopping accrual of negatives at the interim stage
as well as lower probability of stopping the trial early.

The subplots in the last column in Figure 3 show the results for the scenario in which both the posi-
tives and negatives benefit from the treatment where ıC D ı� D ı�. The results indicate good power for
rejecting H0C with values exceeding 90% for all three priors. Unlike the results for 25% prevalence, the
performance of the three priors in the power for rejecting H0� is markedly different; prior P1 has high
power estimates with values in the 90%–91% range for all t , prior P2 has relatively good power with
values in the 73%–75% range, whereas P3 has power values not exceeding 50%. With the comparison
of the plots of the proportion of trials in which H0� is rejected for both 25% and 50% prevalence, the
difference in power estimates are much larger for P3 compared with P2 and P1. A reason for this differ-
ence is the larger sampling variation caused by fewer number of test-negative events. A good design for
this scenario would have a low probability of stopping the trial as well as a low probability of stopping
accrual of the negatives. Both P1 and P2 have low probability of stopping accrual of negatives early as
well as probability of stopping the trial.

5.3. Summary

All three priors are completely adequate with regard to preserving all three type I errors under all condi-
tions. They also provide adequate power for rejecting H0C with P2 and P3 providing outstanding power.

Table I. Proportion of trials in which negative recruitment was stopped
at interim stage for the simulation scenario with ıC D ı�; ı� D 0.

prevD 25% prevD 50%
Prior t D 0:2 t D 0:5 t D 0:2 t D 0:5

P1 0.47 0.83 0.07 0.36
P2 0.76 0.94 0.42 0.71
P3 0.95 0.98 0.90 0.93
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Prior P1 is substantially inferior to the others with regard to early stopping of accrual of marker-negative
patients. Prior P3 performs well for 25% prevalence but provides very poor power for rejecting H0�
when prevalence of positivity is 50%. At 25% prevalence, prior P3 is superior to P2 with regard to early
stopping of accrual of marker-negative patients. When the prevalence is 25%, P2 or P3 is an appropriate
prior. When prevalence is 50%, we recommend the use of the intermediate prior P2.

6. Discussion

Our study demonstrates that confidence in a predictive classifier, based on biological information and
early trial data, can be incorporated into the design of a randomized phase III clinical trial in a Bayesian
framework in a manner that protects both patients and type I error. This design enables limiting the
number of test-negative patients who are exposed to a drug that, based on biological evidence, seems
unlikely to benefit them. This approach also limits costs of clinical development.

Another advantage of the Bayesian formulation is that it clarifies the nature of inference at the con-
clusion of the trial. Frequentist designs have been proposed that combine testing for an overall treatment
effect with testing for a treatment effect in the test-positive subset, allocating the type I error between
the two tests [20]. In practice, however, if the hypothesis of no overall treatment effect is rejected, and a
primary biomarker has been measured, then investigators and regulators will likely insist on evaluating
the treatment effects in the subsets. The Bayesian formulation formalizes that treatment effect in both
subsets is ultimately of interest and utilizes the prior to determine how to share information across the
strata. This leads to a very transparent and interpretable analysis.

Results from the simulations indicate that our two-stage Bayesian design provides adequate power for
testing for an effect on the test positives. Most importantly, type I errors are well controlled. Type I error
estimates for effects in both test positives and test negatives in the null simulation scenario were less
than 0.035. Results in Section 5 indicate that even in the unlikely scenario where an effect exists for the
marker negatives with no effect in the marker positives, empirical type I errors were less than 0.036.

With the appropriate prior, this Bayesian approach enables early futility analysis without substantial
losses in power. The most relevant scenario in a futility analysis is one where there is a treatment effect
in the test positives but no effect in the test negatives. Simulations using priors that reflect confidence in
the biomarker resulted in 90% of the trials stopping negative accruals at the interim stage with as little as
20% of the planned event sizes. Ultimately, the decision on when to perform a futility analysis depends
on the accrual rate of patients, the event rate, and the amount of follow-up time relative to survival time.

Different ı� and prevalence of marker positivity change the marginal distribution of the data. For
instance, low prevalence results in more marker-negative events and therefore less sample variation in
the negative stratum, whereas smaller ı� implies more marker-positive events and consequently more
marker-negative events and less sample variation in both strata. Less sample variation results in less
prior influence on the posterior. The operating characteristics of our method therefore depend on ı�
and the prevalence of marker positivity; hence, a careful selection of priors and evaluation of operating
characteristics are needed for different ı� and prevalence values.

The adaptive design of Wang et al. [7] makes a decision at the interim stage whether to maintain the
stratified design or to only recruit test positives while maintaining the initially planned total sample size.
Hence, the number of test-positive patients accrued at the end is much greater if accrual of test negatives
is terminated at the interim stage. Our two-stage design has three main advantages over the design of
Wang et al. Our adaptive design incorporates a degree of prior confidence in the biomarker utility at the
interim stage to make informed decisions affecting patient accrual, whereas that of Wang et al. assumes
complete confidence in the biomarker. The approach of Wang et al. does not consider the possibility of
early termination of the entire trial, whereas our approach makes a decision on early termination of the
trial depending on the efficacy of the treatment in the test positives at the interim stage. The posterior
distribution of treatment effect for our design yielded high power (greater than 90% with the prior that
reflects confidence in the classifier) for rejecting H0C with 50% prevalence in the simulation scenario,
where a treatment effect exists for the test positives and no treatment effect exists in the test negatives.
The adaptive design of Wang et al. also yields high power for the positives (greater than 90%) but with a
much greater expected sample size of test-positive patients. This results in large increases in the number
of patients screened, thereby prolonging the trial. This effect becomes even greater if the prevalence of
the marker positives is lower.

There are several extensions that can be studied within the framework provided here. We initially size
the number of events in marker-positive patients to detect a treatment effect in the marker positives on
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the basis of a prespecified power value for a specified ı�. We used this number to obtain the expected
number of test-negative events assuming a nonprognostic classifier; hence, the power for rejecting H0�
is not directly controlled. Other approaches are possible.

Our approach could be extended to more than two strata where stratification is based on monotonic
level of marker positivity. In addition to the parameter p00, parameters for all marginal conditional null
probabilities such as those specified in Equations (4) and (5), as well as all combinations of joint con-
ditional null probabilities, need to be specified so as to define the prior’s probability mass function. For
example, with three strata labeled 1, 2, and 3 where stratum 3 has the highest level of marker positivity
and stratum 1 has the lowest, if treatment effects in the strata are denoted as ı1, ı2, and ı3, the prior’s
parametrization is as follows:

P.ı1 D 0jı2 D ı3 D ı�/D r1j23;

P.ı2 D 0jı1 D ı3 D ı�/D r2j13;

P.ı3 D 0jı1 D ı2 D ı�/D r3j12;

and

P.ı1 D ı2 D 0jı3 D ı�/D r12j3;

P.ı1 D ı3 D 0jı2 D ı�/D r13j2;

P.ı2 D ı3 D 0jı1 D ı�/D r23j1;

where P.ı1 D ı2 D ı3 D 0/ D p00. One strategy in the trial design at the interim stage is to test the
effectiveness of the treatment in patients with high marker positivity first. For the three-strata example,
if the treatment is deemed ineffective in stratum 3, then the trial is stopped. Otherwise, if the treatment
is deemed ineffective in stratum 2, then the trial is continued with accrual of stratum 3 patients only,
and so on. The numbers of parameters can be reduced on the basis of monotonicity. In the example, it is
reasonable to assume r2j13 D r13j2 D 0. This approach works well with a small number of strata, but for
many strata or when strata are not ordered, other approaches need to be considered, for example, using
continuous distributions for the prior.

Our methodology can be applied to dose-selection trials where an efficacy endpoint is assumed to
have a monotonic relationship with dose. For this application, the trial population should be stratified
by the treatment arms that correspond to different dose levels. For example, in a trial with two dose
levels, high and low, prior information on the efficacy of the dose levels can be incorporated into the
design by selecting appropriate values of r1 and r2, where r1 represents the probability of the treatment
being ineffective at the higher dose given that it works in the lower dose and r2 represents the proba-
bility of the treatment being ineffective at the lower dose given it works in the higher dose. The interim
analysis outlined in Section 3 is directly applicable, likening the higher dose’s treatment arm with the
marker-positive strata and the lower dose’s treatment arm with the marker-negative strata. Hence, if the
treatment is deemed ineffective at the higher dosage, then the trial should be stopped at the interim stage.
Incorporation of prior belief in efficacy of dose levels in trial design has an advantage over the practice
of treating different doses as different treatments [21] as it allows for information sharing among the
treatment arms.

For our simulations, the prior distribution for .ıC; ı�/ have mass on f.0; 0/; .ı�; 0/; .0; ı�/; .ı�; ı�/g,
where ı� represents the treatment effect of minimal clinical significance. Frequentist designs are typ-
ically planned on the basis of such discretizations. This discretization provides a foundation for the
continuous priors. It would be useful to evaluate in the future the advantages offered by such continuous
priors, but the design based on the discretized space can be useful in designing new studies.

In the design proposed, we reject a hypothesis if its posterior probability falls below a prespecified
level of � D 0:05. At the interim stage, we do not reject a hypothesis if the posterior is greater than some
threshold value TH D 0.7, 0.8, or 0.9. The designs with the parameters considered worked well for all
simulation scenarios examined, but other values could be examined for achieving acceptable operating
characteristics in other conditions.

This paper outlines a design that is very promising in developing molecularly targeted treatments. The
framework set out in this paper offers a practical approach for utilizing Bayesian designs in phase III
trials. The key is not computational power but careful selection of prior distributions that are appropriate
for the context of the study and ensuring that the design has good frequency characteristics under a range
of values for ıC and ı�. This approach enables one to utilize prior biological evidence while retaining
the strengths of the frequentist formulation that has been so valuable for clinical trials.
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APPENDIX A. Posterior probabilities calculation

The prior parametrization with

P.ıC D 0jı� D ı�/D r2

P.ı� D 0jıC D ı�/D r1

P.ıC D 0; ı� D 0/D p00

results in the following probability mass function:

P.ıC D 0; ı� D ı�/D aq2.1� p00/

P.ıC D ı�; ı� D 0/D aq1.1� p00/

P.ıC D ı�; ı� D ı�/D a.1� p00/

P.ıC D 0; ı� D ı�/D p00;

where a D .1� r1/.1� r2/=.1� r1r2/, q1 D r1=.1� r1/, q2 D r2=.1� r2/, and q00 D p00=.1� p00/.
We let Li;j D P. OıC; Oı�jıC D i; ı� D j / denote the marginal conditional probabilities of the bivariate
Normal density given in Equation (3), then the posterior probabilities are as follows:

P.ıC D 0j OıC; Oı�/D .p00L0;0CP.ıC D 0; ı� D ı�/L0;ı�/=k; (10)

P.ı� D 0j OıC; Oı�/D .p00L0;0CP.ıC D ı�; ı� D 0/Lı�;0/=k; (11)

P.ıC D 0; ı� D 0j OıC; Oı�/D .p00L0;0/=k; (12)

where

k D p00L0;0CP.ıC D ı�; ı� D 0/Lı�;0CP.ıC D 0; ı� D ı�/L0;ı� CP.ıC D ı�; ı� D ı�/Lı�;ı� :
(13)

By factoring out the numerator in both the numerator and denominator of Equations (10) and (12), the
posterior probabilities can be rewritten as

P.ıC D 0j OıC; Oı�/D

�
1C

aq1Lı�;0C aLı�;ı�
q00L0;0C aq2L0;ı�

��1
; (14)

P.ı� D 0j OıC; Oı�/D

�
1C

aq2L0;ı� C aLı�;ı�
q00L0;0C aq1Lı�;0

��1
; (15)

P.ıC D 0; ı� D 0j OıC; Oı�/D

�
1C

aq2L0;ı� C aq1Lı�;0C aLı�;ı�
q00L0;0

��1
: (16)

A1. Limiting probabilities

Complete a priori confidence in the utility of the classifier means r1! 1 and r2! 0 then a! 0 and

aq1 D r1.1� r2/=.1� r1r2/! 1;

aq2 D r2.1� r1/=.1� r1r2/! 0;

and the limiting posterior probability of the treatment having no effect in the marker positive patients is

P.ıC D 0j OıC; Oı�/!

�
1C

Lı�;0

q00L0;0

��1
; (17)

which is dependent on p00 and the data. The limiting posterior probability of the treatment having no
effect in the marker-negative patients is

P.ı� D 0j OıC; Oı�/! 1: (18)
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The limiting joint posterior probability of the treatment having no effect in both marker-positive and
marker-negative patients is

P.ıC D 0; ı� D 0j OıC; Oı�/!

�
1C

Lı�;0

q00L0;0

��1
: (19)

A complete lack of confidence in the utility of the biomarker implies r1! 0 and r2! 0 then a! 1.
As a result

aq1! 0;

aq2! 0;

and

P.ıC D 0j OıC; Oı�/!

�
1C

Lı�;ı�
q00L0;0

��1
; (20)

P.ı� D 0j OıC; Oı�/!

�
1C

Lı�;ı�
q00L0;0

��1
; (21)

P.ıC D 0; ı� D 0j OıC; Oı�/!

�
1C

Lı�;ı�
q00L0;0

��1
: (22)

APPENDIX B. Interim analysis results

Table BI. Simulation results for 25% prevalence showing probability of stopping accrual of negatives early
(S1), probability of stopping trial early (S2), probability of rejecting H0C (PRC), and probability of rejecting
H0� (PR�) with 20% and 50% accrued events for interim analysis.

Prior P1 Prior P2 Prior P3
.ıC; ı�/ t TH S1 S2 PRC PR� S1 S2 PRC PR� S1 S2 PRC PR�

.0; 0/ 0.2 0.7 0.28 0.46 0.00 0.00 0.69 0.17 0.02 0.00 0.88 0.09 0.03 0.00
0.8 0.33 0.32 0.00 0.00 0.71 0.09 0.02 0.00 0.90 0.05 0.03 0.00
0.9 0.35 0.17 0.00 0.00 0.67 0.03 0.02 0.00 0.89 0.01 0.03 0.00

0.5 0.7 0.18 0.79 0.00 0.00 0.43 0.55 0.02 0.00 0.54 0.45 0.03 0.00
0.8 0.24 0.71 0.00 0.00 0.51 0.47 0.02 0.00 0.64 0.35 0.03 0.00
0.9 0.35 0.58 0.00 0.00 0.63 0.32 0.02 0.00 0.75 0.24 0.03 0.00

.ı�; 0/ 0.2 0.7 0.53 0.07 0.72 0.00 0.82 0.01 0.87 0.00 0.96 0.00 0.91 0.00
0.8 0.47 0.03 0.74 0.00 0.76 0.00 0.88 0.00 0.95 0.00 0.91 0.00
0.9 0.37 0.01 0.74 0.00 0.66 0.00 0.88 0.00 0.89 0.00 0.91 0.00

0.5 0.7 0.83 0.07 0.74 0.00 0.95 0.02 0.87 0.00 0.98 0.01 0.91 0.00
0.8 0.83 0.04 0.74 0.00 0.94 0.01 0.87 0.00 0.98 0.00 0.91 0.00
0.9 0.81 0.02 0.74 0.00 0.92 0.00 0.88 0.00 0.98 0.00 0.91 0.00

.0; ı�/ 0.2 0.7 0.01 0.12 0.03 0.87 0.05 0.10 0.03 0.84 0.22 0.09 0.03 0.68
0.8 0.01 0.06 0.03 0.93 0.04 0.05 0.03 0.90 0.17 0.04 0.03 0.78
0.9 0.00 0.02 0.03 0.97 0.02 0.01 0.03 0.96 0.10 0.01 0.03 0.87

0.5 0.7 0.00 0.44 0.03 0.56 0.01 0.44 0.04 0.55 0.03 0.42 0.03 0.54
0.8 0.00 0.35 0.03 0.65 0.01 0.34 0.03 0.64 0.03 0.34 0.03 0.62
0.9 0.00 0.22 0.03 0.77 0.00 0.22 0.03 0.77 0.02 0.23 0.03 0.73

.ı�; ı�/ 0.2 0.7 0.01 0.01 0.92 0.98 0.06 0.00 0.92 0.93 0.24 0.00 0.92 0.74
0.8 0.00 0.00 0.91 0.99 0.04 0.00 0.92 0.96 0.17 0.00 0.92 0.81
0.9 0.00 0.00 0.92 0.99 0.02 0.00 0.92 0.97 0.10 0.00 0.92 0.88

0.5 0.7 0.00 0.01 0.92 0.99 0.01 0.01 0.92 0.97 0.05 0.01 0.92 0.92
0.8 0.00 0.00 0.92 0.99 0.01 0.00 0.91 0.98 0.04 0.00 0.92 0.94
0.9 0.00 0.00 0.92 1.00 0.01 0.00 0.92 0.98 0.03 0.00 0.92 0.96
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Table BII. Simulation results for 50% prevalence showing probability of stopping accrual of negatives early
(S1), probability of stopping trial early (S2), probability of rejecting H0C (PRC), and probability of rejecting
H0� (PR�) with 20% and 50% accrued events for interim analysis.

Prior P1 Prior P2 Prior P3
.ıC; ı�/ t TH S1 S2 PRC PR� S1 S2 PRC PR� S1 S2 PRC PR�

.0; 0/ 0.2 0.7 0.10 0.30 0.01 0.01 0.50 0.16 0.02 0.00 0.86 0.09 0.03 0.00
0.8 0.08 0.19 0.01 0.01 0.42 0.08 0.02 0.00 0.87 0.04 0.03 0.00
0.9 0.05 0.09 0.01 0.01 0.25 0.02 0.02 0.00 0.77 0.01 0.03 0.00

0.5 0.7 0.12 0.71 0.01 0.00 0.36 0.54 0.02 0.00 0.52 0.45 0.03 0.00
0.8 0.14 0.63 0.01 0.00 0.41 0.44 0.02 0.00 0.62 0.35 0.03 0.00
0.9 0.15 0.50 0.01 0.01 0.42 0.32 0.02 0.00 0.67 0.23 0.03 0.00

.ı�; 0/ 0.2 0.7 0.13 0.03 0.76 0.03 0.56 0.01 0.88 0.00 0.95 0.00 0.91 0.00
0.8 0.07 0.02 0.75 0.03 0.42 0.00 0.88 0.01 0.90 0.00 0.92 0.00
0.9 0.03 0.00 0.76 0.03 0.22 0.00 0.88 0.00 0.77 0.00 0.91 0.00

0.5 0.7 0.43 0.05 0.77 0.03 0.77 0.01 0.88 0.01 0.95 0.01 0.91 0.00
0.8 0.36 0.03 0.77 0.03 0.71 0.01 0.88 0.01 0.93 0.00 0.91 0.00
0.9 0.25 0.01 0.77 0.03 0.57 0.00 0.88 0.01 0.87 0.00 0.91 0.00

.0; ı�/ 0.2 0.7 0.01 0.15 0.03 0.66 0.10 0.12 0.03 0.59 0.55 0.09 0.03 0.24
0.8 0.00 0.08 0.03 0.72 0.06 0.06 0.03 0.64 0.43 0.04 0.03 0.34
0.9 0.00 0.03 0.03 0.76 0.02 0.02 0.03 0.69 0.24 0.01 0.03 0.43

0.5 0.7 0.01 0.47 0.03 0.43 0.04 0.46 0.03 0.38 0.17 0.44 0.03 0.26
0.8 0.00 0.39 0.03 0.49 0.03 0.36 0.03 0.46 0.14 0.35 0.03 0.31
0.9 0.00 0.26 0.03 0.60 0.02 0.24 0.03 0.54 0.10 0.23 0.03 0.38

.ı�; ı�/ 0.2 0.7 0.01 0.01 0.91 0.90 0.11 0.00 0.91 0.70 0.59 0.00 0.91 0.29
0.8 0.00 0.00 0.91 0.91 0.05 0.00 0.92 0.74 0.45 0.00 0.91 0.36
0.9 0.00 0.00 0.91 0.91 0.01 0.00 0.92 0.75 0.25 0.00 0.92 0.44

0.5 0.7 0.01 0.01 0.91 0.90 0.07 0.01 0.91 0.74 0.29 0.01 0.92 0.46
0.8 0.00 0.00 0.91 0.90 0.04 0.00 0.92 0.75 0.21 0.00 0.92 0.48
0.9 0.00 0.00 0.91 0.91 0.02 0.00 0.91 0.75 0.13 0.00 0.92 0.50

References
1. Simon R. Designs and adaptive analysis plans for pivotal clinical trials of therapeutics and companion diagnostics. Expert

Opinion in Medical Diagnostics 2008; 2:721–729.
2. Temple RJ. Special study designs: early escape, enrichment, studies in non-responders. Communications in Statistics -

Theory and Methods 1994; 23(2):499–531. DOI: 10.1080/03610929408831269.
3. Maitournam A, Simon R. On the efficency of targeted clinical trials. Statistics in Medicine 2005; 24:329–339. DOI:

10.1002/sim.1975.
4. Simon R, Maitournam A. Evaluating the efficiency of targeted designs for randomized clinical trials. Clinical Cancer

Research 2004; 10:6759–6763. DOI: 10.1158/1078-0432.CCR-04-0496.
5. Simon R. The use of genomics in clinical trial design. Clinical Cancer Research 2008; 14:5984–5993. DOI: 10.1158/1078-

0432.CCR-07-4531.
6. Sargent DJ, Conley BA, Allegra C, Collette L. Clinical trial designs for predictive marker validation in cancer treatment

trials. Journal of Clinical Oncology 2005; 23(9):2020–2027. DOI: 10.1200/JCO.2005.01.112.
7. Wang S, O’Neill RT, Hung JMJ. Approaches to evaluation of treatment effect in randomized clinical trials with genomic

subset. Pharmaceutical Statistics 2007; 6:227–244. DOI: 10.1002/pst.300.
8. Freidlin B, Simon R. Adaptive signature design: an adaptive clinical trial design for generating and prospectively testing

a gene expression signature for sensitive patients. Clinical Cancer Research 2005; 11:7872–7878.
9. Jiang W, Freidlin B, Simon R. Biomarker adaptive threshold design: treatment with possible biomarker-defined subset

effect. Journal on National Cancer Institute 2007; 99:1036–1043. DOI: 10.1093/jnci/djm022.
10. Berry DA. A case for Bayesianism in clinical trials. Statistics in Medicine 1993; 12:1377–1393. DOI:

10.1002/sim.4780121504.
11. Greenhouse JB, Wasserman L. Robust bayesian methods for monitoring clinical trials. Statistics in Medicine 1995;

14:1379–1391. DOI: 10.1002/sim.4780141210.
12. Chaloner K, Church T, Louis TA, Matts JP. Graphical elicitation of a prior distribution for a clinical trial. The Statistician

1993; 42:341–353.
13. Carlin BP, Sargent DJ. Robust bayesian approaches for clinical trial monitoring. Statistics in Medicine 1996;

15:1093–1106. DOI: 10.1002/(SICI)1097-0258(19960615)15:11<1093::AID-SIM231>3.0.CO;2-0.
14. Giaccone G, Herbst RS, Manegold C, Scagliotti G, Rosell R, Miller V, Natale RB, Schiller JH, von Pawel J, Pluzanska

A, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III
trial–INTACT 1. Journal of Clinical Oncology 2004; 22(5):777–784. DOI: 10.1200/JCO.2004.08.001.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 901–914

913



S. W. KARURI AND R. SIMON

15. Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, Canon JL, Van Laethem JL, Maurel J,
Richardson G, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best support-
ive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. Journal of Clinical Oncology 2007;
25(13):1658–1664. DOI: 10.1200/JCO.2006.08.1620.

16. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, et al. Erlotinib
plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the
National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology 2007; 25(15):1960–1966. DOI:
10.1200/JCO.2006.07.9525.

17. Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, Mannel RS, DeGeest K, Hartenbach EM,
Baergen R. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with opti-
mally resected stage III ovarian cancer: a Gynecologic Oncology Group study. Journal of Clinical Oncology 2003;
21(17):3194–3200. DOI: 10.1200/JCO.2003.02.153.

18. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch
C, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. New England Journal of Medicine
2005; 353(16):1659–1672. DOI: 10.1056/NEJMoa052306.

19. Schaid DJ, Wieand S, Therneau TM. Optimal two-stage screening designs for survival comparison. Biometrika 1990;
7:507–513.

20. Simon R, Wang S. Use of genomic signatures in therapeutics development in oncology and other diseases. The
Pharmacogenomic Journal 2006; 6:166–173.

21. Stallard N, Todd S. Sequential designs for phase III clinical trials incorporating treatment selection. Statistics in Medicine
2003; 22:689–703. DOI: 10.1002/sim.1362.

914

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 901–914


