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Abstract 
 

Using a question and answer format we try to describe important aspects of using 

genomic technologies in cancer research. The main challenges are not managing the mass 

of data, but rather the design, analysis and accurate reporting of studies that result in 

increased biological knowledge and medical utility. Many analysis issues address the use 

of expression microarrays, but are also applicable to other whole genome assays. 

Microarray based clinical investigations have generated both unrealistic hype and 

excessive skepticism. Genomic technologies are tremendously powerful and will play 

instrumental roles in elucidating the mechanisms of oncogenesis and in bringing on an 

era of predictive medicine in which treatments are tailored to individual tumors. 

Achieving these goals involves challenges in re-thinking many paradigms for the conduct 

of basic and clinical cancer research and paradigms for the organization of 

interdisciplinary collaboration. 
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We will address some key issues on the use of genomic technology in biomedicine. Our 

focus will be on cancer therapeutics, although many issues have broader relevance. We 

will address study design for both developmental and validation studies. We also address 

topics in the analysis of genomic data; matching analysis strategy  to study objective, 

limitations of traditional statistical tools for whole genome assays, and recommended 

analysis methods. A question and answer format is used with division into general 

introductory topics, questions about biologically focused “gene finding” studies, and 

questions about medically focused studies using genomics for predictive medicine. The 

questions addressed are listed below: 

 

Introductory issues  

What is the difference between genomic data and genetic data? 

Why is genomic data important? 

Is “the right treatment for the right patient” hype or substance? 

What kinds of genomic data are available? 

Is the challenge how to manage all of this data? 

Isn’t cluster analysis the way to analyze gene expression profiles? 

Can biologists and clinical investigators analyze genome-wide data? 

What are the appropriate analysis methods? 

What is class discovery? 

 

Gene finding 
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What methods are appropriate for gene finding problems? 

How many samples do you need for gene finding with expression data? 

How do you relate lists of differentially expressed genes to pathways? 

 

Prediction 

How do prediction problems differ from gene finding problems? 

What kinds of predictive classifiers are best? 

How can you determine whether a predictive classifier is statistically significant? 

How can you determine whether a predictive classifier adds predictive value to standard 

prognostic factors? 

Can predictive classifiers be used with survival data? 

What is the difference between a developmental study and a validation study? 

How can you evaluate whether a genomic test improves medical utility relative to 

standard practice guidelines? 

Why do predictive classifiers developed in different studies for the same types of patients 

use very different sets of genes for prediction? 

Why are so many molecular predictors available in the literature but so few find a use in 

clinical practice? 
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Introductory issues 

What is the difference between genomic data and genetic data? 

Genomic data provides information about the genome of a cell or group of cells. This 

includes both the genetic polymorphisms that are transmitted from parent to offspring as 

well as information about the somatic alterations resulting from mutational and 

epigenetic events. 

 

Why is genomic data important? 

Cancer is a disease caused by altered DNA. Some of these alterations may be inherited 

and some somatic. Genetic association studies attempt to identify the genetic 

polymorphisms that increase the risk of cancer. These contribute to understanding the 

molecular basis of the disease and permit identification of individuals for whom intensive 

surveillance or chemoprevention strategies may be appropriate. The genomics of tumors 

are studied in order to understand the molecular basis of the disease, to identify new 

therapeutic targets, and to develop means of selecting the right treatment for the right 

patient. 

 

Is “the right treatment for the right patient” hype or substance? 

Both. The phrase originated outside of oncology where it was interpreted to mean 

personalizing therapy based on the genetic makeup of the patient. In oncology, 

personalization of therapy has mostly been based on the genomics of the tumor, not the 

genetics of the patient. The tumors originating in a given anatomical site are generally 

heterogeneous among patients; tumor genomics provides relevant information about that 
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heterogeneity. In some areas of oncology targeted medicine is already a reality. For 

example in breast cancer treatment is often selected based on estrogen receptor status and 

HER2 gene amplification1,2. Using genomics effectively for treatment selection depends 

critically on the predictive accuracy of the genomic test and the medical context. To 

withhold a potentially curative treatment from a patient based on a test with less than 

perfect negative predictive value would be a serious mistake. A genomic test is only 

warranted if its predictive accuracy adds substantially to that of existing practice 

guidelines3. Extensive clinical studies are needed to demonstrate that a genomic test is 

ready and appropriate for clinical use4.  

 

What kinds of genomic data are available? 

Starting in around 1996 DNA expression microarrays became available that provided 

estimates of abundance of mRNA transcripts genome wide. Today arrays are available to 

provide transcript abundance information for each exon of each gene in the genome. 

Within the past several years comparative genomic hybridization arrays and single 

nucleotide polymorphism (SNP) arrays have become available for identifying copy 

number variations and loss of heterozygosity on a genome wide basis. Genome wide 

genotyping is being widely used for identifying single nucleotide polymorphisms and in 

the next few years it will be economically feasible to completely re-sequence the 

genomes in individual tumors. 

 

Is the challenge how to manage all of this data? 
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That’s not the main challenge. The amount of data is well within the capability of modern 

information technology. For example, the BRB-ArrayTools software package that I 

developed (available at http://linus.nci.nih.gov) can easily handle 1000 expression 

profiles of 50,000 transcripts to develop predictive classifiers, fully cross-validated, on a 

personal computer within minutes 5. The much greater challenge is the proper design, 

analysis, interpretation and reporting of studies to utilize the technology in a way that 

provides meaningful biological information and diagnostic tests that have real medical 

utility 6. A recent review by Dupuy and Simon indicated that half of published papers 

relating expression profiling to cancer outcome contained at least one error sufficiently 

serious as to raise questions about the conclusions of the study7. Because of the number 

of variables measured with genome wide assays, there is great opportunity for discovery, 

but great risk of reaching misleading conclusions. The statistical analysis of such data is 

very challenging and it is critical that authors make their data, both the genomic data and 

the clinical data, publicly available for others to independently verify their claims and to 

utilize their data in meta analyses. The kind of restrictions on data sharing that have been 

practiced for clinical trials data is not desirable for whole genome assay studies. Some 

journals require this, but it should be an absolute requirement for all cancer journals.  

 

Isn’t cluster analysis the way to analyze gene expression profiles? 

The recent paper by Dupuy and Simon 7 identified inappropriate use of cluster analysis as 

one of the most common flaws in published studies relating microarray gene expression 

to cancer outcome. The over-use of cluster analysis is indicative of a more fundamental 

problem that limits the effective use of genomic technology, the lack of adequate 
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interdisciplinary collaboration. Analysis of genome-wide data is complex, and few 

biologists or clinical investigators have the training for it. Many of the design and 

analysis problems presented by genomic data are also new for statisticians and 

application of standard statistical approaches to high-dimensional genomic data often 

gives unsatisfactory results. Statisticians who invested substantial time learning about 

medicine made crucial contributions to cancer clinical trials. Making such contributions 

to biology and genomic medicine will take the same type of commitment. Unfortunately, 

the organizational structures of many of our institutions are not well suited to effective 

inter-disciplinary collaboration. Organizations sometimes overemphasize software 

engineering and database building and underemphasize high level statistical genomics 

collaboration. Many cancer research organizations have not made the resource 

commitments necessary to attract the right people and foster effective multi-disciplinary 

collaboration.  

 

Can biologists and clinical investigators analyze genome-wide data? 

Multidisciplinary collaboration is most effective when there is substantial overlap of 

knowledge. One of the challenges in biomedicine today is training and re-training 

scientists in the effective use of whole-genome data. The challenge isn’t really in doing 

the assays, because assays quickly become commodities that can be ordered. Issues of 

how to design studies and analyze data involving genome-wide technology are important 

for biologists and clinical investigators, not just statisticians and computational scientists. 

One of the main objectives of BRB-ArrayTools 5 is to provide to biomedical scientists a 

software based tool for such training. It is also important that clinical scientists learn 
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enough to be appropriately critical readers of the published literature; there are serious 

problems in some papers published in even the most prominent journals7. Many young 

biologists and clinical investigators are very eager to develop their expertise in this area. 

It is important, but it requires an investment of time.  

 

What are the appropriate analysis methods? 

The right methods and the right specimens depend on the objective of the study. 

Microarray expression profiling has opened up entirely new kinds of biological 

investigations. Traditionally in studying biological mechanisms one focused on a small 

number of proteins, developed assays to measure them, and then designed an experiment 

to test a hypothesis about how the concentrations of the proteins would vary under the 

experimental conditions. Today, one can measure the abundance of all transcripts in a 

single assay. Consequently, less focused kinds of experimentation are possible. Although 

microarray based studies do not require gene or protein specific hypotheses, having a 

clear objective is still important for structuring an interpretable experiment with 

appropriate samples and an appropriate analysis. Many uses of microarrays can be 

categorized as (i) Class Discovery; (ii) Gene finding or class comparison; (iii) Prediction. 

  

What is class discovery? 

Finding genes that are co-regulated or are in the same pathway can sometimes be 

accomplished by sorting genes into groups with similar expression profiles across a set of 

conditions. Many “cluster analysis” algorithms have been developed to do this sorting. 

Cluster analysis algorithms are sometimes used to sort samples into groups based on 
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similarity of their expression profiles over the set of genes. Clustering samples generally 

does not use any phenotype information about the samples. Cluster analysis methods 

always result in clusters, however, and there is generally no appropriate way of 

“validating” a cluster analysis except by seeing whether the resulting clusters differ with 

regard to a known phenotype.  

 

If one is looking for gene-expression based groupings of samples that correlate with a 

phenotype, however, it is generally much better to use “supervised” prediction methods. 

Those methods are called “supervised” because they use the phenotype class information 

explicitly. Often there may only be a small number of genes whose expression is 

correlated with the phenotype and unsupervised cluster analysis will not group the 

samples in ways that correlate with the phenotype. A serious mistake commonly made is 

to cluster the samples with regard to the genes found to be correlated with the phenotype. 

Showing that the samples can be thereby clustered into groups that differ with regard to 

the phenotype is erroneously used as evidence of the relevance of the selected genes. This 

practice violates the principle of separating the data used for developing a classifier from 

the data used for testing it. Since the same data is used for identifying the genes and for 

clustering the samples with regard to those selected set of genes, the process is invalid. 

As pointed out by Dupuy and Simon, this is one of the most commonly found serious 

errors in studies relating gene expression to cancer outcome7 

 

Gene finding 

What methods are appropriate for gene finding problems? 
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Gene finding includes studies of mechanisms; e.g. what genes are induced during wound 

healing, or what genes are differentially expressed in normal mouse breast epithelium 

compared to a breast tumor in a genetically engineered mouse. Gene finding is sometimes 

called class comparison. For comparing gene expression between two classes of samples, 

one can use familiar statistical measures such as significance tests of difference in mean 

expression between the classes.  It is important, however, to take into account that 

differential expression is being compared for tens of thousands of genes. Hence, the usual 

threshold of .05 for statistical significance is not appropriate. Using the .05 threshold 

there will be 500 false positive genes declared differentially expressed per 10,000 genes 

tested. This average false positive rate is independent of the correlation of expression 

among the genes. A threshold of statistical significance of .001 instead of .05 results in 

only 10 false positives per 10,000 genes tested on average.  

 

For gene finding it has become standard to control the “false discovery rate”.  If n genes 

are reported in a publication to be differentially expressed between the classes and if m 

are false positives, then m/n is the false discovery rate. The simplest way to control the 

false discovery rate is using the method of Benjamini and Hochberg8. Suppose a 

publication reports n genes as differentially expressed and all have a p value less than p*. 

Then an approximation to the false discovery rate is Np* / n   where N denotes the 

number of genes tested for differential expression. This is based on approximating the 

number of false positives as p* times the number of genes tested N. This approximation 

is generally somewhat conservative since some of the N genes are actually differentially 

expressed and other approximations are also used 9,10. Other methods for finding genes 
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that are differentially expressed such as SAM 11 and the multivariate permutation test 12 

control the false discovery rate in a more sophisticated manner that takes into account the 

correlation among genes. The multivariate permutation test of Korn et al., SAM, the 

Benjamini Hochberg method, as well as more complex Analysis of variance methods are 

available in BRB-ArrayTools5.  

 

Class comparison methods are not limited to finding genes that are differentially 

expressed between two classes. There may be more than two classes or one may be 

interested in genes whose expression is correlated with a quantitative variable or a 

censored variable such as survival time. In time course experiments one may be 

interested in genes whose expression changes with time after an experimental 

intervention13. One might also be interested in genes whose expression varies with time 

differently for two classes of samples. These can all be viewed as gene finding problems. 

Although the statistical measures of correlation of gene expression with phenotype 

depends on the nature of the problem, the control of the number or proportion of false 

positives is important in all cases. Failure to provide adequate control of false positives 

was one of the three most common serious problems in expression profiling studies 

reported by Dupuy and Simon 7. 

 

How many samples do you need for gene finding with expression data? 

For comparing classes, you need representative samples from each class. In general the 

biological variability in expression among samples of the same class is much greater than 

the variability among technical replicates, i.e. among replicate arrays of the same mRNA 
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sample. The statistical power of gene finding studies depends primarily on the number of 

biological replicates, and it is often appropriate to not perform any technical replicates. 

These issues, particularly for dual label arrays are described by Dobbin et al.14,15 The 

number of cases needed in each class depends on the fold difference in mean expression 

to be detected and the degree of biological variation in expression within each class. 

Often the studies are sized to detect a two-fold mean difference in expression. The intra-

class variation differs among genes and is greater for human tissues than for cell lines. 

Dobbin et al. 15 provide simple formulas based on controlling the false discovery rate by 

using a stringent type one error level for sample size planning and these methods are 

available in BRB-ArrayTools 5.  Shih et al.16 have also shown that pooling of samples is 

rarely desirable unless necessary to obtain enough RNA for the assay. 

 

How do you relate lists of differentially expressed genes to pathways? 

Traditionally this has been done by first generating the list of differentially expressed 

genes, and then using software tools and genomic websites to annotate the genes 

appearing on the list. This approach has some serious limitations, however. In order to 

limit the false discovery rate, genes are usually included in the list only if their p value for 

differential expression is statistically significant at a stringent threshold. This may leave 

out many genes that are differentially expressed but not to the extent required for 

inclusion in the gene lists. An alternative approach that has become popular uses the 

pathway information directly in the evaluation of differential expression, not post-hoc to 

annotate the gene lists. Gene set enhancement analysis 17 is one method of this type. It 

focuses attention on a specified set of genes and computes a summary statistic of the 

 13



extent to which that set is enriched with regard to genes that rank high with regard to 

over-expression in the first class compared to the second class. In computing that 

enrichment score, however, it does not enforce a binary categorization of the genes as 

differentially expressed or not differentially expressed. The method then computes the 

significance of the degree of summary enrichment relative to what one would expect if no 

genes were differentially expressed among classes. Gene sets that are significantly 

enriched relative to that null distribution are identified. Tian et al. 18 pointed out that there 

are various null hypotheses that could be tested and that measuring enrichment or 

differential expression relative to the global null hypothesis that no genes are 

differentially expressed may not be useful in cases where there are many differentially 

expressed genes. Numerous alternative methods have been reported 19-21. BRB-

ArrayTools contains several methods for this purpose for evaluating the relationship of 

differential gene expression among classes to a variety of gene sets including, gene 

ontology categories, Biocarta signaling pathways, Kegg metabolic pathways, Broad 

Institute signatures, transcription factor targets, microRNA targets and genes whose 

protein products contain a PFAM protein domains 22.   

 

Prediction 

How do prediction problems differ from gene finding problems? 

Prediction problems arise in medical applications, for example to predict which tumors 

are likely to respond to a given drug. One might think of this as a two class problem with 

one class consisting of samples from patients who have responded to the treatment and 

the other class of samples from non-responders. Although one component of developing 
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a predictive classifier is selecting the informative genes to include, predictive problems 

are actually quite different from class comparison problems. In class comparison 

problems it is important to control the false discovery rate. In prediction problems, 

however, the objective is accurate prediction for independent data, not limiting the false 

discovery rate to an arbitrarily specified value. Thus the appropriate criteria for gene 

selection in prediction problems is different than for class comparison problems. For 

example, in prediction it is often much more serious to miss informative genes than to 

include some false discoveries 23. Class comparison or gene finding problems are often 

about understanding biological mechanisms. In some cases it is much easier to develop 

an accurate predictor than to understand the biological basis of why the predictor works. 

Understanding biological mechanisms is quite difficult and many excellent biologists 

have spent a career trying to understand experimental systems that are much simpler than 

mammalian cells.  

 

What kinds of predictive classifiers are best? 

A class predictor, or classifier based on gene expression data, is a function which predicts 

a class from an expression profile. Specification of a class predictor requires specification 

of  (i) the genes whose expression levels are utilized in the prediction; (ii) the 

mathematical form used to combine the of expression levels to the component genes; and 

(iii) the parameters such a weights placed on expression levels of individual genes and 

threshold values used in the prediction. A predictive classifier is more than a set of genes. 

The development of a predictor has some similarities to logistic regression analysis. 

Statistical regression models have in the past generally been built using data in which the 
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number of cases (n) is large relative to the number of candidate variables (p). In the 

development of class predictors using gene expression data, however, the number of 

candidate predictors is generally orders of magnitude greater than the number of cases. 

This has two important implications. One is that only simple class prediction functions 

should be considered.  The other is that the data used for evaluating the class predictor 

must be distinct from the data used for developing it. It is almost always possible to 

develop a class predictor even on completely random data which will fit that same data 

almost perfectly but be completely useless for prediction with independent data.  

 

One approach to selecting genes to include in the predictive classifier is to use the genes 

that by themselves are most correlated with the outcome or the phenotype class. This 

actually is not the way that prediction models have traditionally been developed.  

Traditionally, procedures like stepwise regression methods are used to select variables 

that have independent contributions to prediction and which work well together. In 

traditional regression modeling, there is careful consideration of whether variables should 

be transformed and whether interactions among the effects of combinations of variables 

should be included in the model. A rule of thumb for traditional regression modeling is to 

have at least 10 times the number of cases as you have variables. With whole genome 

assays, we have tens of thousands of variables; e.g. the expression of each gene 

represented on a microarray is a variable. Consequently, the 10 to 1 rule would require 

hundreds of thousands of cases for analysis and that is clearly not possible. As a result, 

the kind of regression modeling that statisticians used for problems with many cases and 

few variables doesn’t work well for genomic problems. It’s not that accurate prediction is 
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not possible in high dimensional (p>>n) problems; it’s just that different methods of 

predictive modeling must be used.  

 

Numerous algorithms have been used effectively with DNA microarray data for class 

prediction. Many of the widely used classifiers combine the expression levels of the 

genes selected as informative for discrimination using a weighted linear function  

 

( ) i i
i G

l x w x
∈

=∑                                     (1) 

 

 

where xi denotes the log-expression for the i’th gene, wi is the weight given to that gene, 

and the summation is over the set G of genes selected for inclusion in the classifier. For a 

two-class problem, there is also a threshold value d; a sample with expression profile 

defined by a vector x of values is predicted to be in class 1 or class 2 depending on 

whether ( )l x  as computed from equation (1) is less than the threshold d or greater than d 

respectively. Many of the widely used classifiers are of the form shown in (1); they differ 

with regard to how the weights are determined.  

 

Dudoit et al. 24,25 compared many classification algorithms and found that the simplest 

methods, diagonal linear discriminant analysis and nearest neighbor classification, 

usually performed as well or better than more complex methods. Nearest neighbor 

methods are not of the linear form shown in (1). They are based on computing similarity 

of a sample available for classification to samples in a training set. Often Euclidean 
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distance is used as the similarity measure, but is calculated with regard to the set of genes 

selected during training as being informative for distinguishing the classes. The PAM 

method of Tusher et al. is a popular form of nearest neighbor classification 11. Ben-Dor et 

al.26 also found that nearest neighbor classification generally performed as well or better 

than more complex methods. Similar results were found by Wessels et al.27  

 

There is a substantial literature on complex methods for selecting small subsets of genes 

that work well together to provide accurate predictions. Such methods would be useful 

because a predictor based on a small number of genes may be more biologically 

interpretable than one based on hundreds of genes. It would also be easier to convert such 

a predictor to an RT-PCR platform so that it could be used with formalin fixed paraffin 

preserved tissue. Unfortunately, attempts to independently verify the performance of 

some of these methods has been disappointing. 27,28.  . 

 

How do you validate a predictive classifier? 

A cardinal principle for evaluating a predictive classifier is that the data used for 

developing the classifier should not be used in any way in testing the classifier. The 

simple split-sample method achieves this by partitioning the study samples into two parts. 

The separation is often done randomly, with half to two-thirds of the cases used for 

developing the classifier and the remainder of the cases used for testing. The cases in the 

test set should not be used for determining which variables to include in the classifier and 

they should not be used to compare different classifiers built in the training set. The cases 

in the test set should not be used in any way, until a single completely specified model is 
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developed using the training data. At that time, the classifier is applied to the cases in the 

test set. For example, with an expression profile classifier, the classifier is applied to the 

expression profiles of the cases in the test set and each of them are classified, as a 

responder or non-responder to the therapy. The patients in the test set have received the 

treatment in question and so one can count how many of those predictive classifications 

were correct and how many were incorrect. In using the split sample method properly, a 

single classifier should be defined on the training data. It is not valid to develop multiple 

classifiers and then use their performance on the test data to select among the 

classifiers29.  

 

There are more complex forms of dividing the data into training and testing portions. 

These cross-validation or re-sampling methods utilize the data more efficiently than the 

simple division described above30. Cross-validation generally partitions the data into a 

large training set and a small test set. A classifier is developed on the training set and then 

applied to the cases in the test set to estimate the error rate. This is repeated for numerous 

training-test partitions and the prediction error estimates are averaged. Molinaro et al. 

showed that for small datasets (e.g. less than 100 cases), leave-one-out cross validation or 

10-fold cross validation can provide much more accurate estimates of prediction accuracy 

than the split sample approach or the averaging results over random replicated split-

sample partitions. Michiels et al. 31 suggested that multiple training-test partitions be 

used, rather than just one. The split sample approach is mostly useful, however, when one 

does not have a completely defined algorithm for developing the classifier. When there is 

a single training set-test set partition, one can perform numerous analyses on the training 
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set to develop a classifier and use biological considerations of which genes to include 

before deciding on the single classifier to be evaluated  on the test set. With multiple 

training-test partitions however, that type of flexible approach to model development 

cannot be used. If one has a completely defined algorithm for classifier development, it is 

generally better to use one of the cross-validation  approaches to estimating error rate 

because the replicated split sample approach does not provide as efficient a use of the 

available data.  

 

In order to honor the key principal of not using the same data to both develop and 

evaluate a classifier, it is essential that for each training-test partition the data in the test 

set is not used in any way32-34. Hence a model should be developed from scratch in each 

training set. This means that multiple classifiers are developed in the process of doing 

cross-validation and those classifiers will in general involve different sets of genes. It is 

completely invalid to select the genes beforehand using all the data and then to just cross-

validate the model building process for that restricted set of genes. Radmacher et al.33 and 

Ambroise and McLachlan 32 demonstrated that such pre-selection results in severely 

biased estimates of prediction accuracy. In spite of this known severe bias, this error is 

made in many developmental classifier studies7. The estimate of prediction accuracy 

resulting from complete cross-validation is an internally valid and unbiased estimate of 

the prediction accuracy for the model developed using the full set of data. A wide variety 

of classification models, variable selection algorithms, and complete cross-validation 

methods are available in BRB-ArrayTools5. 
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How can you determine whether a predictive classifier is statistically 

significant? 

For predictive classifiers, statistically significant should mean predicts more accurately 

than chance. If a separate test set of cases is available, then it is easy to compute whether 

the prediction accuracy in the test set is better than chance. The prevalence of the classes 

needs to be taken into account, however. For example, if 20 percent of cases are 

responders then one can be correct 80 percent of the time by always predicting non-

response. If cross-validation is used then the statistical significance of the cross-validated 

estimate of prediction error can be determined by repeating the cross-validation for 

permuted data as described by Radmacher et al.33. This approach is preferable to the 

approach proposed by Michiels et al.31.  

 

How can you determine whether a predictive classifier adds predictive value 

to standard prognostic factors? 

Statistical significance of a predictive classifier should not be evaluated by using cross-

validated class predictions in a multivariate regression model. Many studies utilize this 

approach to establish that the genomic prediction model provides “independent prediction 

value” over established covariates. The approach is not valid, however, because the 

cross-validated predictions are not independent 35. It is also not appropriate because it 

mistakes statistical significance of association measures with predictive value36. It is 

much more meaningful to evaluate the cross-validated predictions of a genomic classifier 

within the levels of an established staging system. 
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Can predictive classifiers be used with survival data? 

Such classifiers are best developed without trying to convert the survivals to binary 

categories. Several methods have been developed for categorizing patients into risk 

groups based on gene expression data 37,38. BRB-ArrayTools 5builds a Cox proportional 

hazards model within each cross-validated training set using the top principal 

components of the genes that are most correlated with survival in that training set. That 

model is used to classify the test-set cases as high or low risk. After the cross-validation 

loops are complete, Kaplan-Meier curves are constructed of the survivals of the cases 

classified as high risk versus those classified as low risk. The statistical significance of 

the difference between the cross-validated Kaplan-Meier curves are determined by 

repeating the entire procedure many times with the gene expression profiles permuted. 

Permutation is necessary because the standard log-rank test is invalid for cross-validated 

Kaplan-Meier curves because the data is not independent. This approach is also used to 

determine whether gene expression classifiers predict survival risk better than standard 

covariates and also to build models using genes whose expression adds to those of the 

covariates. 

 

What is the difference between a developmental study and a validation 

study? 

Predictive classifiers are constructed in developmental studies. Validation studies test 

pre-specified classifiers. Developmental studies should provide some internal estimate of 

predictive accuracy for the classifier developed. This estimate is usually based on 

 22



splitting the data into a training set and a test set or using cross-validation. These are 

both, however, types of internal validation. Taking one set of data collected and assayed 

under carefully controlled research conditions and splitting it into a training and testing 

set is not the same as evaluating the predictive accuracy of a classifier on a new set of 

patients from different centers with tissue collection and assay performance more 

representatitve of real-world conditions36.  

 

Developmental studies are often too limited in size, structure and the nature of the cases 

to establish medical utility of a predictive classifier. Even in the pre-genomic era 

prognostic factor studies were often conducted using a convenience sample of available 

specimens from a heterogeneous group of patients who have received a variety of 

treatments. Classifiers that are prognostic for such a mixed group often have uncertain 

therapeutic relevance39. The Oncotype Dx classifier is one example of a prognostic 

classifier that does have therapeutic value40,41 because it was developed and validated 

using cases appropriate for a therapeutic decision context.. Predictive classifiers that 

identify which patients respond to specific treatments are often more valuable than the 

more commonly seen prognostic studies of heterogeneous patients. Currently there is 

considerable interest in using predictive classifiers to increase the efficiency and 

informativeness of new drug development42-45.  

 

 In planning a study to develop a predictive classifier, considerable care should be given 

to selecting cases so that the result has potential therapeutic relevance. Very often this 

objective can be enhanced by selecting cases who participated in an appropriate clinical 
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trial. Whereas developmental studies often provide some measure of predictive accuracy 

for the classifiers, such estimates may not establish real medical utility4. Medical utility 

often requires establishing that the predictive classifier is more effective than standard 

practice guidelines for enabling treatment selection that results in better patient outcome 

(or similar outcome with less adverse events). Establishing medical utility depends on 

available treatment options and current standards of care. A key step in developing a 

useful predictive classifier is identifying a key therapeutic decision setting that can 

potentially be improved based on genomic data. 

 

How can you evaluate whether a genomic test improves medical utility 

relative to standard practice guidelines? 

The gold standard evidence might be a randomized clinical trial in which patients are 

randomized to two groups. In one group treatment is determined using the genomic 

classifier. In the other group treatment is determined by standard practice guidelines. This 

clinical trial is generally very inefficient and requires so many patients that it is rarely 

practical. The reason for the inefficiency is that many if not most patients will receive the 

same treatment regardless of which group they are randomized to. Consequently, a huge 

sample size is needed to detect the small difference in overall outcome resulting from a 

difference for the patients whose treatment assignment actually differs between the two 

groups. A more efficient design involves measuring the genomic test on all patients 

before randomization, and then only randomizing those whose treatment based on the 

genomic test is different from that based on practice guidelines. This design is being 

currently used in the MINDACT trial to test the medical utility of the 70-gene signature 
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developed by van’t Veer et al46. The MINDACT trial uses the Adjuvant! Online website 

as standard practice guidelines. The superiority of the 70-gene classifier to Adjuvant! 

Online with regard to predictive accuracy was independently established by Buyse et al., 

but that in itself did not establish medical utility47.  An alternative approach to 

establishing medical utility is to perform the genomic test on patients for whom practice 

guidelines specify a particular treatment, and randomize those for whom the genomic test 

suggests a different treatment. That approach is being used in the TAILORx trial. Patients 

with node negative ER positive breast cancer with tumors greater than xx cm and 

Oncotype DX score between 11 and 25 are being randomized to either receive standard 

practice chemotherapy or no chemotherapy. Both of these trials are quite large and will 

require long follow-up. If a sufficiently complete and adequately preserved set of 

archived specimens were available from an appropriate randomized clinical trial, it might 

be possible to perform a prospective analysis using retrospective data. That would 

certainly expedite the evaluation of medical utility. Technical validation of the robustness 

of the assay for use with prospectively collected tissues could be established separately. 

The advantages of such a prospective-retrospective design is a strong reason for archiving 

tumor specimens for all major randomized clinical trials.   

 

Why do predictive classifiers developed in different studies for the same 

types of patients use very different sets of genes for prediction? 

Validating a predictive classifier means validating that the classifier predicts accurately 

for independent data. It does not mean that the same genes would be selected in 

developing a classifier with independent data. This point is often mis-understood and is a 
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source of inappropriate criticism of expression profiling studies. The expression levels 

among genes are highly correlated. It has long been known for regression model building 

that in such settings there are many models that predict about equally well. This is even 

more the case for genomic studies where the number of candidate variables is large 

relative to the number of cases 48. It would take enormous numbers of cases to distinguish 

the small differences in predictive accuracy among such models 49 but it is a very 

inappropriate criterion for sample size planning. Dobbin and Simon have shown that 

much smaller sample sizes are generally needed to develop predictive classifiers with 

accuracy within five to ten percentage points to the accuracies that could be achieved 

with unlimited cases 50,51. The Dobbin and Simon method is for planning the sample size 

for a trainng set used to develop the genomic classifier and is available on-line at 

http://linus.nci.nih.gov/brb/samplesize/.  A substantial number of additional cases will be 

needed for a test set that provides precise estimates of sensitivity and specificity, 

particularly to determine whether the classifier adds sufficiently to the predictive 

accuracy  of standard prognostic factors.  

 

Why are so many molecular predictors available in the literature but so few 

find a use in clinical practice?  

Puzstai identified 939 articles on “prognostic factors” or “prognostic markers” in breast 

cancer over 20 years and only 3 were widely used in practice52. Kyzas et al. reviewed 340 

articles on prognostic marker meta-analyses and 1575 articles on cancer prognostic 

markers published in 2005 and found that over 90% of the articles reported statistically 
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significant findings53.There are multiple factors that account for the discrepancy between 

the many positive reports in the literature and the lack of clinical use of such markers.  

 

One of the most important reasons for the discrepancy is that prognostic factors that do 

not help in therapeutic decision making are not generally used. Most of the literature 

reports are based on evaluating prognosis using “convenience samples” of specimens 

from heterogeneous patients without focus on a therapeutic decision. Prognostic markers 

have potential value for therapeutic decision making only under very restricted 

circumstances. If one studies prognosis for a set of patients who are receiving limited 

local treatment only,  then the prognostic marker may help identify patients who do not 

need systemic therapy. Unless the prognostic study is focused in that manner, it is 

unlikely to be therapeutically relevant. Studies of predictive markers are likely to be more 

useful. A predictive marker provides information on the likelihood of benefit from a 

specific treatment. To study a predictive marker using survival or disease free survival as 

an endpoint, one needs a substantial number of specimens from patients in a randomized 

clinical trial of the treatment of interest versus an appropriate control treatment. If 

objective tumor response is the endpoint, then a randomized clinical trial is not needed, 

but the specimens must be for patients who received the treatment in question. Such 

studies are much less common than unfocused studies of prognostic markers in mixed 

populations. 

 

.A second key reason for the discrepancy between reports of prognostic or predictive 

markers and number used in practice is that for a test to be useful for therapeutic decision 
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making, there generally needs to be two viable treatment options and this is often not the 

case.  If there is one good treatment and the prognosis for untreated patients is poor, then 

few physicians will order a test to determine who to leave untreated. In the case of 

Oncotype DX, the prognosis for many node negative ER positive patients who received 

tamoxifen alone was good, so for that population there were two viable treatment options, 

tamoxifen alone or tamoxifen plus chemotherapy41. For many clinical settings, that is not 

the case. In some contexts, there may be two treatment options but the test does not have 

sufficient positive and negative predictive value for clinical use. Many of the 

developmental studies do not even recognize the importance of predictive value and over-

emphasize statistical significance53.  

 

Finally, it is very difficult to develop a test to the point that it can be reliably used in 

routine medical practice. It involves developing a robust assay that can be used broadly 

and then technically validating that the test is reproducible and robust to variations in 

tissue collection and reagents. Unless there is a diagnostic company involved with a 

viable business plan for that test, the development is unlikely to occur. Clinical validation 

that the test has medical utility for treatment selection compared to practice standards is 

even a more formidable hurdle. Such studies, to achieve the highest level of evidence, are 

prohibitively expensive except in the limited cases where government or charity agencies 

provide funding unless they can be conducted as a prospective analysis of archived 

specimens.  If the development of genomic tests is linked to the development and 

approval of new molecularly targeted drugs, then some of these obstacles may be 

avoided.  
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Conclusion 

As pointed out by Dupuy and Simon, microarray based clinical investigations have 

generated both unrealistic hype and excessive skepticism. Genomic technologies are 

tremendously powerful and will play instrumental roles in elucidating the mechanisms of 

oncogenesis and in bringing on an era of predictive medicine in which treatments are 

tailored to individual tumors. Achieving these goals involves challenges in re-thinking 

many paradigms for the conduct of basic and clinical cancer research and paradigms for 

the organization of interdisciplinary collaboration. Whole genome technology provides 

power for both discovery and for generating erroneous claims. We need to provide 

appropriate training and interdisciplinary research settings that enable laboratory and 

clinical scientists to utilize genomic technology effectively in collaboration with 

statistical and computational scientists. 

 

Acknowledgements 

I would like to acknowledge the valuable comments of Dr. John Ioannidis on an earlier 

draft of this manuscript. 

 

REFERENCES 
 

 1. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al: Trastuzumab after 
adjuvant chemotherapy in HER2-positive breast cancer. New England Journal of 
Medicine 353:1659-1672, 2005 
 2. Paik S, Taniyama Y, Geyer CE: Anthracyclines in the treatment of HER2-
negative breast cancer. Journal of the National Cancer Institute 100:2-3, 2008 
 3. Kattan MW: Judging new markers by their ability to improve predictive 
accuracy. Journal of the National Cancer Institute 95:634-635, 2003 

 29



 4. Simon R: When is a genomic classifier ready for prime time? Nature 
Clinical Practice: Oncology 1:2-3, 2004 
 5. Simon R, Lam A, Li MC, et al: Analysis of gene expression data using 
BRB-ArrayTools. Cancer Informatics 2:11-17, 2007 
 6. Simon R, Korn EL, McShane LM, et al: Design and Analysis of DNA 
Microarray Investigations. New York, Springer Verlag, 2003 
 7. Dupuy A, Simon R: Critical review of published microarray studies for 
cancer outcome and guidelines on statistical analysis and reporting. Journal of the 
National Cancer Institute 99:147-157, 2007 
 8. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical 
and powerful approach to multiple testing. Journal of the Royal Statistical Society B 
57:289-300, 1995 
 9. Storey JD: A direct approach to false discovery rates. Journal of the Royal 
Statistical Society B 64:479-498, 2002 
 10. Wu B, Guan Z, Zhao H: Parametric and nonparametric FDR estimation 
revisited. Biometrics 62:735-744, 2006 
 11. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays 
applied to the ionizing radiation response. Proceedings of the National Academy of 
Science 98:5116-5121, 2001 
 12. Korn EL, Li MC, McShane LM, et al: An investigation of SAM and the 
multivariate permutation test for controlling the false discovery proportion. Statistics in 
Medicine (In press), 2008 
 13. Storey JD, Xiao W, Leek JT, et al: Significance analysis of time course 
microarray experiments. Proceedings of the National Academy of Science 102:12837-
12842, 2005 
 14. Dobbin K, Shih J, Simon R: Questions and answers on design of dual-
label microarrays for identifying differentially expressed genes. Journal of the National 
Cancer Institute 95:1362-1369, 2003 
 15. Dobbin K, Simon R: Sample size determination in microarray experiments 
for class comparison and prognostic classification. Biostatistics 6:27-38, 2005 
 16. Shih JH, Michalowska AM, Dobbin K, et al: Effects of pooling mRNA in 
microarray class comparison. Bioinformatics 20:3318-3325, 2004 
 17. Subramanian A, Tamayo P, Mootha VK: Gene set enrichment analysis: A 
knowledge-based approach for interpreting genome-wide expression profiles. 
Proceedings of the National Academy of Science 102:15545-15550, 2005 
 18. Tian L, Greenberg SA, Kong SW, et al: Discovering statistically 
significant pathways in expression profiling studies. Proceedings of the National 
Academy of Science 102:13544-13549, 2005 
 19. Pavlidis P, Qin J, Arango V, et al: Using the gene ontology for microarray 
data mining: A comparison of methods and application to age effects in human prefrontal 
cortex. Neurochemical Research 29:1213-1222, 2004 
 20. Kong SW, Pu WT, Park PJ: A multivariate approach for integrating 
genome-wide expression data and biological knowledge. Bioinformatics 22:2373-2380, 
2006 
 21. Goeman JJ, Buhlmann P: Analyzing gene expression data in terms of gene 
sets: methodological issues. Bioinformatics 23:980-987, 2007 

 30



 22. Xu X, Zhao Y, Simon R: Gene sets expression comparison in BRB-
ArrayTools. Bioinformatics (In press), 2008 
 23. Breiman L, Friedman JH, Olshen RA, et al: Classification and Regression 
Trees. Belmont, CA, Wadsworth International Group, 1984 
 24. Dudoit S, Fridlyand J: Classification in microarray experiments, in Speed 
T (ed): Statistical analysis of gene expression microarray data, Chapman & Hall / CRC, 
2003 
 25. Dudoit S, Fridlyand J, Speed TP: Comparison of discrimination methods 
for the classification of tumors using gene expression data. Journal of the American 
Statistical Association 97:77-87, 2002 
 26. Ben-Dor A, Bruhn L, Friedman N, et al: Tissue classification with gene 
expression profiles. Journal of Computational Biololgy 7:559-584, 2000 
 27. Wessels LFA, Reinders MJT, Hart AAM, et al: A protocol for building 
and evaluating predictors of disease state based on microarray data. Bioinformatics 
21:3755-3762, 2005 
 28. Lai C, Reinders MJT, Veer LJvt, et al: A comparison of univariate and 
multivariate gene selection techniques for classification of cancer datasets. BMC 
Bioinformatics 7:235, 2006 
 29. Varma S, Simon R: Bias in error estimation when using cross-validation 
for model selection. BMC Bioinformatics 7:91, 2006 
 30. Molinaro AM, Simon R, Pfeiffer RM: Prediction error estimation: A 
comparison of resampling methods. Bioinformatics 21:3301-3307, 2005 
 31. Michiels S, Koscielny S, Hill C: Prediction of cancer outcome with 
microarrays: A multiple validation strategy. The Lancet 365:488-492, 2005 
 32. Ambroise C, McLachlan GJ: Selection bias in gene extraction on the basis 
of microarray gene-expression data. Proceedings of the National Academy of Science 
99:6562-66, 2002 
 33. Radmacher MD, McShane LM, Simon R: A paradigm for class prediction 
using gene expression profiles. Journal of Computational Biololgy 9:505-12, 2002 
 34. Simon R, Radmacher MD, Dobbin K, et al: Pitfalls in the use of DNA 
microarray data for diagnostic and prognostic classification. Journal of the National 
Cancer Institute 95:14-18, 2003 
 35. Lusa L, McShane LM, Radmacher MD, et al: Appropriateness of 
inference procedures based on within-sample validation for assessing gene expression 
microarray-based prognostic classifier performance. Statistics in Medicine 26:1102-1113, 
2007 
 36. Ioannidis JPA: Is molecular profiling ready for use in clinical decision 
making? The Oncologist 12:301-311, 2007 
 37. Bair E, Tibshirani R: Semi-supervised methods to predict patient survival 
from gene expression data. PLoS Biology 2:511-522, 2004 
 38. Gui J, Li H: Penalized Cox regression analysis in the high-dimensional 
and low-sample size settings, with applications to microarray gene expression data. 
Bioinformatics 21:3001-3008, 2005 
 39. Simon R: Evaluating prognostic factor studies, in Gospodarowicz MK 
(ed): Prognostic factors in cancer (ed 2nd). New York, NY, Wiley-Liss, 2002, pp 49-56 

 31



 40. Paik S, Shak S, Tang G, et al: A multigene assay to predict recurrence of 
tamoxifen-treated, node-negative breast cancer. New England Journal of Medicine 
351:2817-2826, 2004 
 41. Paik S: Development and clinical utility of a 21-gene recurrence score 
prognostic assay in patients with early breast cancer treated with Tamoxifen. The 
Oncologist 12:631-635, 2007 
 42. Simon R: A roadmap for developing and validating therapeutically 
relevant genomic classifiers. Journal of Clinical Oncology 23:7332-7341, 2005 
 43. Simon R, Maitournam A: Evaluating the efficiency of targeted designs for 
randomized clinical trials: Supplement and Correction. Clinical Cancer Research 
12:3229, 2006 
 44. Simon R, Maitournam A: Evaluating the efficiency of targeted designs for 
randomized clinical trials. Clinical Cancer Research 10:6759-6763, 2005 
 45. Freidlin B, Simon R: Adaptive signature design: An adaptive clinical trial 
design for generating and prospectively testing a gene expression signature for sensitive 
patients. Clinical Cancer Research 11:7872-7878, 2005 
 46. van't-Veer LJ, Dai H, Vijver MJvd, et al: Gene expression profiling 
predicts clinical outcome of breast cancer. Nature 415:530-6, 2002 
 47. Buyse M, Loi S, Veer Lvt, et al: Validation and clinical utility of a 70-
gene prognostic signature for women with node-negative breast cancer. Journal of the 
National Cancer Institute 98:1183-1192, 2006 
 48. Fan C, Oh DS, Wessels L, et al: Concordance among gene-expression 
based predictors for breast cancer. New England Journal of Medicine 355:560-569, 2006 
 49. Ein-Dor L, Zuk O, Domany E: Thousands of samples are needed to 
generate a robust gene list for predicting outcome in cancer. Proceedings of the National 
Academy of Science 103:5923-5928, 2006 
 50. Dobbin K, Simon R: Sample size planning for developing classifiers using 
high dimensional DNA expression data. Biostatistics 8:101-117, 2007 
 51. Dobbin KK, Zhao Y, Simon RM: How large a training set is needed to 
develop a classifier for microarray data? Clinical Cancer Research (in press), 2008 
 52. Pusztai L, Ayers M, Stec J, et al: Clinical application of cDNA 
microarrays in oncology. The Oncologist 8:252-258, 2003 
 53. Kyzas PA, Denaxa-Kyza D, Ioannidis JP: Almost all articles on cancer 
prognostic markers quote statistically significant results. European Journal of Cancer 
43:2559-79, 2007 
 
 

 32


