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Design and Analysis Methods Should 
Be Tailored to Study Objectives

• Class Comparison (supervised)
– For predetermined classes, establish whether gene 

expression profiles differ, and identify genes 
responsible for differences

• Class Prediction (supervised)
– Prediction of phenotype using information from gene 

expression profile

• Class Discovery (unsupervised)
– Discover clusters among specimens or among genes



Class Comparison Examples

• Establish that expression profiles differ 
between two histologic types of cancer

• Identify genes whose expression level is 
altered by exposure of cells to an 
experimental drug



Class Prediction Examples

• Predict from expression profiles which 
patients are likely to experience severe 
toxicity from a new drug versus which will 
tolerate the drug well

• Predict which breast cancer patients will 
relapse within two years of diagnosis versus 
which will remain disease free



Class Discovery Examples

• Discover previously unrecognized subtypes 
of lymphoma

• Identify co-regulated genes



Do Expression Profiles Differ for 
Two Defined Classes of Arrays?

• Not a clustering problem
– Global similarity measures generally used for 

clustering arrays may not distinguish classes
• Supervised methods
• Requires multiple biological samples from 

each class



Class comparison requires multiple 
biological samples from each class

• Comparing two RNA samples is not the same as 
comparing two tissues or two biological 
conditions

• Some statisticians and software producers forget 
this
– Formulas for comparing red intensity to green intensity 

on one cDNA array
– Methods for comparing intensities on two GeneChipsTM



How many replicates should I 
do?



• Biological Heterogeneity in Population
• Specimen Collection/ Handling Effects

– Tumor: surgical bx, FNA
– Cell Line: culture condition, confluence 

level
• Biological Heterogeneity in Specimen
• RNA extraction
• RNA amplification
• Fluor labeling
• Hybridization
• Scanning

– PMT voltage
– laser power

Sources of Variability 
(cDNA Array Example)

(Geschwind, Nature Reviews Neuroscience, 2001)



Levels of Replication

• RNA sample divided into multiple aliquots
• Multiple RNA samples from a specimen
• Multiple subjects from population(s)



Levels of Replication

• For comparing classes, replication of 
samples should generally be at the “subject” 
level because we want to make inference to 
the population of “subjects”, not to the 
population of sub-samples of a single 
biological specimen.



Can I do just one cDNA array if I 
pool specimens?

• Pooling does not average systematic differences in 
experimental procedures that come after pooling; 
e.g. labeling and hybridization

• Inference is limited to the specific RNA pools, not 
to the populations since there is no estimate of 
variation among pools

• Statistical inference even to compare the specific 
pools requires replicate labeling and hybridization 
of the RNA pools



Analysis Strategies for Class 
Comparisons

• Compare classes on a gene by gene basis 
using statistical tests
– Control for the large number of tests performed



Controlling for Multiple Testing 

• Bonferroni control of familywise error (FWE) rate 
at level α
– 95% confident that FD=0

• Expected Number of False Discoveries – E(FD)
• Expected Proportion of False Discoveries –

E(FDP) 

*False discovery = declare gene as differentially 
expressed (reject test) when in truth it is not 
differentially expressed



Simple Procedures

• Control E(FD) ≤ u
– Conduct each of k tests at level u/k
– e.g. To limit of 10 false discoveries in 10,000 

comparisons, conduct each test at p<0.001 level
• Control E(FDP) ≤ γ

– FDR procedure



Controlling the Expected False 
Discovery Proportion

• Compare classes separately by gene and 
compute significance levels

• Rank genes in order of significance
– P(1) < P(2) < ... < P(N)

• Find largest index i for which
– P(i)N / i  ≤ FDR

• Consider genes with the i’th smallest P  
values as statistically significant



Step-down Permutation Procedures
(Korn et al., 2001)

Want procedures to allow statements like:
FD Procedure: “We are 95% confident that the 

(actual) number of false discoveries is no 
greater than 2.”

FDP Procedure:  “We are 95% confident that the 
(actual) proportion of false discoveries does not 
exceed .10.” 



Step-down Permutation Procedures

• “Step-down”
– Sequential testing (smallest to largest p-value), 

adjusting critical values as you go
– Less conservative than uniform critical value 

methods
• Permutation-based

– Independent of distribution
– Preserve/exploit correlation among tests by 

permuting each profile as a unit



FD Algorithm
To be (1-α)100% confident that the (actual) 

number of false discoveries is ≤ u:

• Automatically reject H(1), H(2), . . ., H(u).

• For r > u, having rejected H(r-1), reject H(r) if 
P(r) < y(α)u

• y(α)u = α quantile of the permutation distribution 
of the (u+1)st smallest p value

• Once a hypothesis is not rejected, all further 
hypotheses are not rejected.



Notes

• FD procedure with u = 0 reduces to step-down 
FWE procedure (Westfall and Young, 1993)

• Ties and missing data can be handled
• Takes advantage of correlation structure of data
• Particularly useful with small sample size
• Computationally intensive

– Included in BRB-ArrayTools

• Allowing a few errors may buy a lot in power to 
detect “true discoveries”



Control of the Probability 
FDR < g

• Gi(k) = permutation estimate of the 
probability of £ k genes with p£P(i)

• Pr(FDR £k/i) @ Gi(k)
• Select smallest i for which Gi(gi) < a
• Include in gene list those with (i-1)st 

smallest p values



Notes
• Proof of FDP procedure requires asymptotic 

arguments, so control is only approximate for 
small samples

• Takes advantage of correlation structure of data
• Particularly useful with small sample size
• Ties and missing data can be handled
• Computationally intensive

– Included in BRB-ArrayTools
• Allowing a small proportion of errors may buy a 

lot in power to detect “true discoveries”



Class Comparison:
Allocation of Specimens to
cDNA Array Experiments

• Reference Design
• Balanced Block Design
• Loop Design 

– Kerr and Churchill



Reference Design
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R = aliquot from reference pool



Balanced Block Design

A1

B1 A2

B2 A3

B3

B4

A4

RED

GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B



Loop Design
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Ai = aliquot from ith specimen from class A
Bi = aliquot from ith specimen from class B
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Model-based Methods for Analysis of 
cDNA Array Data:  

ANOVA for Logarithm of Background 
Adjusted Intensities

• First Stage Normalization Model
– Array
– Dye
– Array * Dye
– Variety (Class)
– Sample within variety



ANOVA for Logarithm of 
Background Adjusted Intensities

• Gene-Variety Second Stage Models Fitted 
to Residuals from Normalization Model
– Gene
– Array by Gene
– Variety by Gene
– Sample within Variety by Gene

• Gene-Variety Models Fitted Separately by 
Gene



Gene-Variety Model

• r = Gg + AGag + VGvg + SGsg + e

• e ~ N(0,sg
2)

• Efficiency of design based on variance of 
estimators of VGig-VGjg

• To study efficiency, assume SGsg~N(mg,tg
2)



Comparison of Designs

• For class discovery, a Reference design is 
preferable because of large gains in cluster 
performance.

• For class comparisons . . . 
– With a fixed number of arrays, Block design is more 

efficient than Loop or Reference design
• Block design precludes clustering
• Block designs focus on single type of comparison

– With a fixed number of specimens, Reference design is 
more efficient than Loop or Block design when intra-
class variance is “large”.



When Should You Do Reverse-
Label Pairs of 2-color arrays?

• Always?

• Never?

• Sometimes?



Dye Bias

• Average differences among dyes in label 
concentration, labeling efficiency, photon 
emission efficiency and photon detection 
are corrected by normalization procedures

• Gene specific dye bias may not be corrected 
by normalization 



Gene Specific Dye Bias

• Gene specific dye bias is common in my 
experience

• Gene specific dye bias is generally of very 
small magnitude



Comparison of Classes of 
Samples Using A Reference 

Design

• Consistently label reference with same label
• Reverse label pairs are not needed
• Gene specific dye bias does not bias class 

comparisons since the label bias applies 
equally to all classes

• Power for detecting class differences could 
be effected if dye bias is severe



Comparison of Two Classes of 
Samples Using A Block Design

• Paired comparisons
– Tumor vs normal tissue from same patient
– BRCA1 mutated vs BRCA1 non mutated paired by 

stage of disease

• Unpaired comparisons randomly blocked onto 
arrays

• The most efficient design is a balanced block 
design with no reverse arrays of the same two 
specimens



Comparison of Experimental 
Specimens to Internal Reference 

Using a Reference Design

• Comparison to pooled normal tissue reference
– Inference limited to that pool

• Some reverse label array pairs are necessary to 
estimate dye bias; e.g. 5-10 pairs. Rest of arrays 
should be consistently labeled

• ANOVA model based comparison of specimen 
averages to internal reference pool adjusted for 
dye bias



Dobbin, Shih, Simon ANOVA

r is background adjusted, normalized intensity
gene 
array 
dye 
variety  (0=ref, 1=experimental)
individual 
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• Total sample size when comparing two equal 
sized, independent groups:

n = 4σ2(zα/2 + zβ)2/δ2

where δ = mean log-ratio difference between      
classes

σ = standard deviation
zα/2, zβ = standard normal percentiles

• Choose  α small, e.g.  α = .001

Sample Size Planning
GOAL: Identify genes differentially expressed in a 

comparison of pre-defined classes of specimens on two-
color arrays using reference design



• π = proportion of genes on array that are 
differentially expressed between classes

• N = number of genes on the array
• FD = expected number of false discoveries
• TD = expected number of true discoveries
• FDR = FD/(FD+TD)



• FD = α(1-π)N 
• TD = (1-β) πN
• FDR = α(1-π)N/{α(1-π)N + (1-β) πN}
• = 1/{1 + (1-β)π/α(1-π)}



Controlling Expected False 
Discovery Rate

9.5%0.005

2.1%0.0010.05

35.5%0.005

9.9%0.100.0010.01

FDRβαπ



Total Number of Samples for 
Two Class Comparison

12
(t approximation)

0.25
transgenic

mice

250.5 
human 
tissue

1
(2-fold)

0.050.001

Total
Samples

σδβα



Class Prediction

• Predict membership of a specimen into pre-defined 
classes
– mutation status
– poor/good responders
– long-term/short-term survival



Non-cross-validated Prediction
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1. Prediction rule is built using full data set.
2. Rule is applied to each specimen for class 

prediction. 

Cross-validated Prediction (Leave-one-out method)
1. Full data set is divided into training and 

test sets (test set contains 1 specimen).
2. Prediction rule is built from scratch

using the training set.
3. Rule is applied to the specimen in the 

test set for class prediction. 
4. Process is repeated until each specimen 

has appeared once in the test set.
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Prediction on Simulated Null Data

Generation of Gene Expression Profiles
• 14 specimens 
• Log-ratio measurements on 6000 genes
• ~N(0, I6000) for all genes and all samples
• Can we distinguish between the first 7 specimens (Class 1) and the last 7 

(Class 2)?

Prediction Method
• Compound covariate prediction
• Compound covariate built from the log-ratios of the 10 most differentially 

expressed genes.
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Selection of a Class Prediction Method
“Note that when classifying samples, we are confronted with a problem that there 
are many more attributes (genes) than objects (samples) that we are trying to 
classify. This makes it always possible to find a perfect discriminator if we are not 
careful in restricting the complexity of the permitted classifiers. To avoid this 
problem we must look for very simple classifiers, compromising between simplicity 
and classification accuracy.” (Brazma & Vilo, FEBS Letters, 2000)

Weighted voting method: distinguished between subtypes of human acute 
leukemia (Golub et al., Science, 1999)

Support vector machines: classified ovarian tissue as normal or cancerous 
(Furey et al., Bioinformatics, 2000)

Clustering-based classification: applied to above data sets and others (Ben-
Dor et al., J Comput Biol, 2000)

Compound covariate prediction: distinguished between mutation positive 
and negative breast cancers (Hedenfalk et al., NEJM, 2001)



The Compound Covariate Predictor (CCP)
• We consider only genes that are differentially expressed between

the two groups (using a two-sample t-test with small α).
• The CCP

– Motivated by J. Tukey, Controlled Clinical Trials, 1993
– Simple approach that may serve better than complex multivariate 

analysis
– A compound covariate is built from the basic covariates (log-ratios)

tj is the two-sample t-statistic for gene j.
xij is the log-ratio measure of sample i for gene j.
Sum is over all differentially expressed genes.

• Threshold of classification: midpoint of the CCP means for the two 
classes.

CCPi j ij
j

t x= ∑



Advantages of Composite 
Variable Classifier

• Does not over-fit data
– Incorporates influence of multiple variables 

without attempting to select the best small 
subset of variables

– Does not attempt to model the multivariate 
interactions among the predictors and outcome

– A one-dimensional classifier with contributions 
from variables correlated with outcome



Gene-Expression Profiles in 
Hereditary Breast Cancer 

• Breast tumors studied:
7 BRCA1+ tumors
8 BRCA2+ tumors
7 sporadic tumors

• Log-ratios measurements of 
3226 genes for each tumor 
after initial data filtering

cDNA Microarrays
Parallel Gene Expression Analysis

RESEARCH QUESTION
Can we distinguish BRCA1+ from BRCA1– cancers and BRCA2+ from 
BRCA2– cancers based solely on their gene expression profiles?



Classification of hereditary breast cancers with the compound covariate predictor

Class labels

Number of
differentially

expressed genes
m = number of

misclassifications

Proportion of random
permutations with m or
fewer misclassifications

RCA1+ vs. BRCA1− 9 1 (0 BRCA1+, 1 BRCA1−) 0.004
RCA2+ vs. BRCA2− 11 4 (3 BRCA2+, 1 BRCA2−) 0.043

B
B



Linear Methods of Class 
Prediction 

• Compound covariate predictor
• Gollub’s weighted voting method
• Diagonal linear discriminant analysis
• Linear kernel support vector machines
• Perceptrons with linear transfer functions 

and principal component inputs



Comparison of discrimination methods
Speed et al

In this field many people are inventing new methods of 
classification or using quite complex ones (e.g. SVMs). Is this 
necessary?

We did a study comparing several methods on three publicly 
available tumor data sets: the Leukemia data set, the Lymphoma 
data set, and the NIH 60 tumor cell line data, as well as some 
unpublished data sets.

We compared NN, FLDA, DLDA, DQDA and CART, the last 
with or without aggregation (bagging or boosting).

The results were unequivocal: simplest is best!



BRB ArrayTools:
An integrated Package for the 
Analysis of DNA Microarray 

Data 
Created by Statisticians for 

Biologists

http://linus.nci.nih.gov/BRB-ArrayTools.html



BRB ArrayTools

• Based on the experience of Biometric 
Research Branch staff in analyzing 
microarray studies and developing 
methodology for the design and analysis of 
such studies

• Packaged to be easy to use by biologists 
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