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Abstract 

 

Motivation:  Spot intensity serves as a proxy for gene expression in dual-label microarray 

experiments.  Dye bias is defined as an intensity difference between samples labeled with 

different dyes attributable to the dyes instead of the gene expression in the samples.  Dye 

bias that is not removed by array normalization can introduce bias into comparisons 

between samples of interest.  But if the bias is consistent across samples for the same 

gene, it can be corrected by proper experimental design and analysis.  If the dye bias is 

not consistent across samples for the same gene, but is different for different samples, 

then removing the bias becomes more problematic, perhaps indicating a technical 

limitation to the ability of fluorescent signals to accurately represent gene expression.  

Thus, it is important to characterize dye bias to determine: 1) whether dye bias will be 

removed for all genes by array normalization; 2) whether dye bias will not be removed by 

normalization but can be removed by proper experimental design and analysis; and 3) 

whether dye bias correction is more problematic than either of these and is not easily 

removable.   

 

Results:  We analyzed two large (each over 27 arrays) tissue culture experiments with 

extensive dye swap arrays to better characterize dye bias.  Indirect, amino-allyl labeling 

was used in both experiments.  We found that post-normalization dye bias that is 

consistent across samples does appear to exist for many genes, and that controlling and 



Characterizing dye bias                                                                                 Page 3 of 38

correcting for this type of dye bias in design and analysis is advisable.  The extent of this 

type of dye bias remained unchanged under a wide range of normalization methods 

(median-centering, various loess normalizations) and statistical analysis techniques 

(parametric, rank-based, permutation-based).  We also found dye bias related to the 

individual samples for a much smaller subset of genes.  But these sample-specific dye 

biases appeared to have minimal impact on estimated gene expression differences 

between the cell lines. 

 

 

 

 

Introduction 

 

In dual label microarray experiments, the fluorescent intensity of a dye in a spot on the 

microarray serves as a measure of the amount of the mRNA in the original sample 

resulting from transcription of the gene corresponding to the cDNA or oligonucleotide 

printed on that spot.  But, in both direct and indirect labeled experiments, the fidelity of 

the intensity measurement to the underlying gene expression may be different for the two 

dyes1.  To fix ideas, consider a series of self-self hybridization arrays, where the same 

RNA sample is tagged with both dyes during separate reverse transcriptions and 

                                                 
1 In direct labeled experiments, the efficiency of the incorporation of a dye during the reverse transcription 
of the mRNA may depend on the transcript’s particular nucleotide sequence, and this incorporation 
efficiency may be different for the two dyes used in an experiment.  Indirect labeling (Manduchi et al., 
2002), which was used in the experiments presented here, lessens the effect of incorporation efficiency, but 
the quantum efficiencies and stabilities of the dyes are different, which can produce a phenomenon similar 
to differential incorporation efficiency.   
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hybridized to each array.  For a particular gene, the Cy3/green channel may appear 

consistently brighter than the Cy5/red channel, despite the fact that there are no real 

differences in expression.  This phenomenon is usually called dye bias (Tseng et al., 

2001; Kerr et al., 2002; Dobbin et al., 2003a, 2003b; Dombkowski et al., 2004; 

Rosenzweig et al., 2004), because it could potentially introduce bias into comparisons.   

 

Dye bias can be subdivided into four different types: 1) Dye bias that is the same for all 

genes on an array, causing one channel to appear brighter overall than the other; 2) Dye 

bias that depends on the overall spot intensity, and is different for bright spots than for 

dim spots; 3) Dye bias that is associated with some subset of genes, but is consistent for 

the same gene across samples; 4) Dye bias that depends on a combination of 

characteristics of the sample as well as the gene.  Dye bias of type 1) should be 

eliminated by the usual array normalization procedures (e.g., median centering of arrays, 

loess normalization), and loess normalization (Yang et al., 2002) is designed to eliminate 

bias of type 2).  Bias of type 3) we will call gene-specific dye bias because it is bias that 

is different for different genes, but the same for a given gene across all samples in an 

experiment.  (Note that we are using the convention to refer to spots as genes, as in 

“gene-specific dye bias,” although in fact not every spot is always associated with a 

unique gene, so that this would more properly be referred to “feature-specific dye bias.”)  

This type of bias can be eliminated by statistical design and analysis.  Bias of type 4) we 

will call gene-and-sample-specific dye bias because it depends on both the gene and the 

sample being analyzed.  This type of bias is more problematic to eliminate.   
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This paper investigates gene-specific dye bias and gene-and-sample-specific dye bias.  

Gene-specific dye bias will not affect comparisons between samples or classes of samples 

labeled with the same dye, because the bias will cancel out of the comparisons.  A 

“reference design” is a design in which each array includes a common reference sample 

consistently labeled with the same dye.  Even in the presence of gene-specific dye bias, 

the reference design will not produce biased comparisons among classes of the (non-

reference) samples.  For example, in Figure 1(a), comparisons between the tumor and 

normal tissues will not be biased.   

 

Gene-specific dye bias may affect comparisons between samples or classes of samples 

labeled with different dyes, because the bias may not cancel out of the comparisons.  For 

example, Figure 1(b) shows an experiment in which comparisons of the tumor tissue to 

the normal tissue will be affected by gene-specific dye bias.  Because all the tumor tissue 

is labeled with Cy3 and all the normal tissue with Cy5, observed differences between the 

two tissue types may be attributable to either the gene-specific dye bias or to real 

differences in gene expression between the tumor and normal tissue.  The design in 

Figure 1(b) is said to “completely confound” (Cochran and Cox, 1992) the gene-specific 

dye bias with the tissue type distinction, because the two cannot be separated.  Figure 

1(c) shows a balanced block design in which half the tumor samples are labeled with 

Cy3, and the other half with Cy5, and the same for the normal samples.  This labeling 

strategy removes the gene-specific dye bias from the comparisons of the tumor samples 

and the normal samples, and proper statistical analysis can result in a significant increase 

in efficiency compared to the reference design (Dobbin and Simon, 2002).  Intuitively, 
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the adjusted statistical analysis addresses the question: if these samples were all labeled 

the “same way,” would there be significant differences between the gene expression 

measurements?  The “same way” could be interpreted to mean that they were all labeled 

with Cy3, or with Cy5, or labeled with both dyes and the average over the two dyes 

calculated.  All three of these interpretations of “same way” will produce identical 

statistical inference, which is why the dye bias is said to be eliminated from the analysis.  

Biases are not always so easy to eliminate.  For instance, gene-and-sample-specific dye 

bias is not subject to this type of statistical correction.   

 

Gene-and-sample-specific dye bias is more problematic.  This type of dye bias is affected 

by characteristics of the sample as well as the gene, and was proposed by Dombkowksi et 

al. (2004).  In the presence of this type of dye bias, there is not a straightforward way to 

analyze the data so as to eliminate the dye bias, as there was with gene-specific dye bias.  

The reason for this is that one can no longer answer in a general way the question: “If all 

the samples were measured in the `same way,’ would there be significant differences?” 

because the answer will depend on how one defines the “same way.”  For instance, the 

answer will be different if one interprets “same way” to mean all labeled with Cy3, than 

if one interprets it to mean all labeled with Cy5, or to mean all labeled with both dyes and 

the average of the two intensities calculated.  Each of these three interpretations will 

produce different statistical inferences (for proof, see Supplement 2).  But there is no a 

priori reason to choose one of these definitions over the others.  Hence, there enters an 

arbitrary decision into the process which will affect the conclusions of the statistical 

analysis, and truly valid, objective analysis is not possible.  In particular, even dye-
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swapping every array will not allow one to perform valid statistical analyses free of gene-

and-sample-specific dye bias (although this was suggested by the authors of the 2004 

paper). 

 

Previous preliminary findings related to gene-specific dye bias (Tseng et al., 2001; Kerr 

et al., 2002; Dobbin et al., 2003b; Rosenzweig et al., 2004) in direct labeled experiments 

have been highly tentative because of the small sample sizes used.  Dombkowski et al. 

(2004) encountered gene-and-sample-specific dye bias, but did not quantify the 

phenomenon adequately to assess its import.  This paper attempts to address the 

shortcomings of the previous studies by 1) analyzing larger datasets with sufficient 

replication to assure robust estimation and inference in gene-specific models, 2) 

considering both types of dye bias separately, 3) analyzing data from multiple platforms, 

and that utilized indirect labeling technology, and 4) explaining clearly the import of 

these findings for statistical design and analysis of future microarray studies. 

 

 

Materials and Methods 

 

Experimental Description 

Preparation of cDNA and oligonucleotide arrays:   

Microarrays were manufactured at the NCI Microarray Facility, Advanced 

Technology Center, Gaithersburg, MD. Arrays with ~10,000 cDNAs were prepared from 

ready to print UniGEM2 libraries obtained from Incyte, Inc. (Wilmington, DE). Human 
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Genome Oligo Set Version 2.0 Oligo libraries containing ~22,000 oligonucleotides of 70 

bases in length were obtained from Operon, Inc. (Alameda, CA).  Arrays were printed by 

standard protocols on Corning Ultra-GAPS II slides (Corning, NY) using a 

GeneMachine® (San Carlos, CA) OmniGrid 100 instrument.  cDNAs were suspended at 

a concentration of 100 µg/ml and oligonucleotides at 25 µM in 3XSSC buffer, and the 

arrays printed using SMP3 pins from Telechem International (Sunnyvale, CA).  The 

spotted nucleic acids were fixed to the slides and blocked with protocols supplied by the 

manufacturer.   

 

Cell Lines and RNAs:   

Growth of cell lines and RNA isolation was done at the core Gene Expression 

Laboratory at NCI-Frederick.  MCF10A (benign mammary epithelial), LNCAP (prostate 

carcinoma), Jurkat (T-cell lymphoma), SUDHL6 (germinal center B-cell like diffuse 

large B-cell lymphoma), OCI-Ly6 (activated B-cell like diffuse rare B-cell lymphoma) 

and L428 (Hodgkin’s lymphoma) were grown  under standard conditions (Chen et al., 

1996), and RNA was isolated from the cells using TriReagent following the 

manufacturer’s protocol (Molecular Research Center, Inc., Cincinnati, OH).   The 

integrity of the RNA was confirmed by analysis with the Agilent 2100 Bioanalyzer (Palo 

Alto, CA) using the RNA 6000 LabChip® kit.  As a control RNA, Human Universal 

Reference RNA (HUR RNA) was purchased from Stratagene (La Jolla, CA).   

  

Labeling and purification of targets:   
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 Labeled cDNA for the long oligonucleotide and cDNA arrays were synthesized 

and labeled by the indirect amino-allyl method using reagents and protocols supplied 

with the Stratagene FairPlay™ Microarray Labeling Kit.  For cDNA synthesis, 

Stratascript reagents (Stratagene, La Jolla, CA) were used, and Cy3/Cy5 fluorophore 

amino-allyl reagents were obtained from Amersham (Piscataway, NJ). Twenty 

micrograms of total RNA were used for each synthesis.  Labeled cDNA targets were 

purified using Minelute purification kits (Qiagen, Valencia, CA).   

 

Hybridization and washing of arrays:   

 The cDNA and long oligonucleotide microarrays were prehybridized in 40 ul of 

5XSSC, 0.1% SDS and 1% BSA at 420C for 30 minutes.  The prehybridization solution 

was removed and arrays were hybridized for 16 hours at 420C in 5XSSC buffer 

containing Cy3/Cy5 labeled targets, 25% formamide, 0.1% SDS, 1 ug Cot-1 DNA, and 1 

ug poly A RNA.  The cDNA arrays were washed at room temperature in 2XSSC, 0.1% 

SDS for 2 minutes, 1XSSC for 2 minutes, 0.2XSSC for 2 minutes and 0.05XSSC for 1 

minute.  The long oligonucleotide arrays were treated the same except the last wash step 

was omitted.  The slides were dried by spinning at 650 rpm for 3 minutes.   

 

Array scanning and image processing: 

Long oligonucleotide and cDNA arrays were scanned using Axon 4000B scanner 

at 10 micron resolution.  Image processing and quantification of signal values of spotted 

arrays were performed using Genepix 3.0 software (Axon Instruments, Union City, CA).  

The Genepix result files including signal, background, standard deviation, pixel statistics 
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and quality parameters of both channels were deposited in the microarray database 

(mAdb) maintained by NCI/CIT bioinformatics group (Greene et al., 2003).   

 

 

 

Data analysis 

 

For two dual-label experiments, one with cDNA arrays and the other with printed 

oligonucleotide arrays, Stratagene universal human reference RNA was used as a 

standard for testing with RNA from cell lines MCF10a, LNCAP, L428, SUDHL, 

OCILY3 and Jurkat.  All arrays were dye-swapped at least twice.  There were a total of 

28 cDNA arrays and 30 oligonucleotide arrays.  Table 1 gives a description of the cell 

lines and experimental design.   

 

Data were background corrected by subtracting the median background pixel intensity 

from the mean foreground intensity, because the median background subtraction makes 

the tiny dust particles less significant and the mean foreground is preferable to the median 

foreground for spots that lack signal in the center, called doughnuts.  Signals below 100 

were truncated to 100.  Spots flagged for poor quality were eliminated from the analysis 

and any genes with missing data were eliminated.  The reason we eliminated genes with 

missing data is that analyses with missing data may result in either inestimable 

parameters or significant power loss compared to complete data.  This left 8,604 of the 

9,069 genes on the cDNA arrays for analysis, and 15,790 of the 21,794 genes on the 
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oligonucleotide arrays for analysis.  Normalizations using both median centering of 

arrays and loess smoothing (Yang et al., 2002) yielded very similar results.  We present 

the median centering results here (with the exception of Figure 4). 

 

For each gene, the general analysis of variance model for the data was  

        corcooc
cor

cor COOC
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T

Log εµ ++++=⎥
⎦

⎤
⎢
⎣

⎡
2 ,                                                        (1) 

where  is the base 2 logarithm,  and  are the background-corrected, 

normalized intensity in the target (cell line) channel and the reference channel, 

respectively; 

2Log corT corR

µ  represents the overall mean log-ratio;  are the cell line effects, for the 

six cell lines, representing differences in expression among the cell lines, ;  

is the orientation effects, representing gene-specific dye bias, for each dye orientation 

(e.g., target labeled with Cy3 or Cy5) 

cC

6,...,2,1=c oO

2,1=o ;  is the cell line by orientation 

interaction, representing the gene-and-sample-specific dye bias; and 

coCO

corε  is independent, 

normally distributed error.  The usual parameter constraints ensure identifiability 

(Cochran and Cox, 1992). 

 

Equation (1) models the log-ratios instead of the log-intensities, as is often done in 

microarray analysis of variance studies.  But we have shown that the log-ratio and log-

intensity models are equivalent, and provided a one-to-one mapping of the model 

parameters (Dobbin and Simon, 2005).    
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The analysis of variance tables for both experiments are given in the supplementary 

materials.  Importantly, both tables provide strong evidence that the sample size for this 

study is adequate, allowing 16 or more degrees of freedom for error in each case, in 

contrast to previous studies that had inadequate error degrees of freedom for robust gene 

specific analyses.   

 

We believe that this dataset is most appropriately analyzed using generalized least 

squares (Carroll and Ruppert, 1982a, 1982b; Pinheiro and Bates, 2000), because many 

genes displayed large heteroscedasticity of error variance for different cell lines (see 

supplement for further discussion and motivation).  However, since our goals is to 

characterize dye bias in as broad a context as possible, we have analyzed gene-specific 

dye bias using a wide range of parametric, rank-based, and permutation-based analysis 

methods.  In addition, we have considered both median normalization and global loess 

normalization, and further considered a range of parameter settings for the loess 

normalization to ensure the robustness of these findings.  In particular, the loess 

smoothing parameter alpha (Cleveland et al., 1992), which controls the degree of 

smoothing, was varied through the range 0.4 to 3.0 – values outside this range appearing 

to grossly over- or under-smooth. 

 

 

 

Results 
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We analyzed dual-label microarray data from both a cDNA experiment and an 

oligonucleotide experiment.   

 

Gene-specific dye bias 

 

First we consider the cDNA experiment.  We analyzed the normalized, background-

corrected data separately for each gene.  Table 2 shows the results of multiple analyses of 

the data.  In assessing gene-specific dye bias, we considered three approaches: 1) Make 

no adjustment for cell line heterogeneity; 2) Make an adjustment only for differences in 

the mean or median expression in the different cell lines; 3) Make adjustment for both 

differences in the mean expression in the different cell lines and for differences in the 

variances of expression in the different cell lines.  These analyses can be viewed as 

covering a range from most naïve (1) to least naïve (3).  In Equation (1), the p-values in 

Table 2 corresponds to the statistical hypothesis test that each of the  orientation 

effects terms is zero. 

oO

 

First, note that in all the analyses in Table 2, the number of genes which display 

statistically significant dye bias is much greater than the number expected by chance;   

the number of genes range from 863 to 3,388, whereas only 9 are expected by chance.  

Secondly, note that for a given approach to cell line heterogeneity adjustment (i.e., either 

no adjustment, adjustment for location differences only, or adjustment for both location 

and scale differences), the extent of the dye bias is extremely similar across a range of 

analytic techniques, from t-tests to rank-sum tests to permutation tests.  If no cell line 
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adjustment is made dye bias is observed in 10-12% of genes; if only a location cell line 

adjustment is made dye bias is observed in 20-27% of genes; if both location and scale 

cell line adjustment is made dye bias is observed in 38-39% of genes.  In all cases, the 

percentage of gene-specific dye bias genes greatly exceeds the percentage expected by 

chance2.     

 

Results as to the overall extent of dye bias were very similar for loess normalization 

under a range of different parameter settings for the loess fit (Table 4 of supplement).  

 

Table 2 also presents data on the size of the gene-specific dye bias for the statistically 

significant genes (rightmost column).  In Equation (1), these correspond to the estimated 

 values from the model fit.  The median effect size of the dye bias for genes which 

display dye bias ranges from 1.4-fold to 1.5-fold for the non-naïve analyses (with 

location only or location and scale adjustment).  In the generalized least squares analysis, 

125 (1.5%) of the genes have an estimated gene-specific dye bias greater than 2-fold, and 

1 gene has an estimated gene-specific dye bias greater than 4-fold.      

oÔ

 

 

To assess the impact of gene-specific dye bias on inferences about the cell lines, we fit a 

model that only accounted for differences between the cell lines (ignoring gene-specific 

dye bias), and a model that accounted for both differences between the cell lines and 
                                                 
2 That is, the number expected to be observed at this significance level if, in fact, no genes are differentially 
expressed.  This expected number generally depends on the number of genes on the array and the statistical 
test assumptions, but not on the correlation structure among the genes.  See Dobbin and Simon (2005) 
supplement section 2 for an example of how correlation does not impact the calculation of expected 
number.  
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gene-specific dye bias, to compare the results.  In particular, we fit the model 

corc
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⎢
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⎡
2 .  If the gene-specific 

dye biases (represented by ) are trivial, then the two models should lead to nearly 

identical statistical inference.  Agreement between the p-values from the overall F-tests 

of any differential expression among the cell lines is shown in Table 3; each F-test tests 

the hypothesis that all of the  cell line main effects terms are zero.  For 4,801 genes 

(56%) both models indicated that gene expression varied among all lines.  For 3,163 

genes (37%) both models indicated that gene expression did not vary across all lines.  

The models gave discrepant results for 640 genes (7%), that is, one model found there 

was significant differential expression and the other found that there was not significant 

differential expression among the cell lines.  For 559 genes (6%), the model with gene-

specific dye bias found the genes significantly differentially expressed and the model 

without gene-specific dye bias found them not significant, so the dye bias appears to have 

masked the true differential expression.  For 81 genes (1%), the discrepancy was in the 

opposite direction, so the dye bias appears to have led to “false-positive” detection of 

differential expression for these genes.  The observed imbalance in discrepancies is to be 

expected because for nearly balanced data like this, gene-specific dye bias will tend to 

mask true gene expression differences rather than create “false-positives.”   

oO

cC

 

The results were very similar for the oligonucleotide arrays (see supplemental material).  

While the higher proportion of filtered genes on the oligonucleotide arrays (~28% versus 

~5% on the cDNA arrays) results in greater uncertainty as to the true extent of dye bias 
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on this platform, the overall similarity of dye bias we observed on both platforms 

suggests that filtered genes may not systematically differ from unfiltered genes with 

regard to dye bias.   

 

 

Gene-and-sample-specific dye bias 

 

We next consider gene-and-sample-specific dye bias.  Based on the high concordance 

across analytic methods for the gene-specific dye bias, we restrict presentation to the 

generalized least squares analysis.   

 

There appear to be far fewer genes with significant gene-and-sample-specific dye bias 

than there were with gene-specific dye bias.  But there do appear to be more genes with 

gene-and-sample-specific dye bias than we would expect by chance.  There were 1,029 

genes with p-values below .05, as compared to 430 expected by chance; and there were 

150 with p-values below .001, as compared to 9 expected by chance.    

 

Comparing the gene-specific dye bias to the gene-and-sample-specific dye bias3, we find 

3,388 genes with gene-specific p-value below 0.001 compared to 150 genes with gene-

and-sample specific p-value below 0.001.  The relative sizes of the bias for the significant 

genes was similar; the 3,388 genes with significant gene-specific dye bias p-value below 

                                                 
3 Gene-specific dye bias estimates represent the average amount by which one channel tends to show up 
brighter than the other.  When gene-and-sample-specific dye bias is also present, this overall trend in the 
average is supplemented by a sample-specific trend, so that the dye bias may be different in size or 
direction for a particular cell line. 
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0.001 had bias with median absolute value 0.46 (1.4-fold), whereas the 150 genes with 

gene-and-sample-specific dye bias had bias with median absolute value 0.27 (1.2-fold).   

 

One test of the importance of the gene-and-sample-specific dye bias on statistical 

inference is to compare the estimated differences in gene expression between the cell 

lines using all the dye swap arrays to those same estimates using only arrays with one 

labeling (e.g., with Stratagene labeled Cy3).  Figure 2 shows plots of the estimated sizes 

of the differences in expression between each of the 6 cell lines and the overall average of 

the cell lines across the 8,604 genes, using both the full dataset with all 28 arrays and 

using only the subset of 15 arrays that were all run with the same orientation (Stratagene 

labeled with Cy3/green dye).  The estimates fall close to a 45 degree line through the 

origin, indicating good agreement between the dye swap estimates and the forward-only 

estimates.  Table 4 shows the numbers of discrepancies that are large in estimated size 

when using the full dataset versus using only the forward-labeled arrays.  In all cases, less 

than 1% of genes display estimated discrepancies larger than 1 (two-fold).  Very similar 

results were obtained when: 1) estimates derived from only the forward run arrays were 

compared to those derived from only the backward run arrays; and 2) the oligonucleotide 

arrays were examined (see supplemental material). 

 

In conclusion, although there is some evidence that gene-and-sample-specific dye bias 

may exist for a subset of genes, the impact of this bias on estimated differences between 

gene expressions in the cell lines appears to be minor.     
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Autofluorescence 

 

We investigated the potential that dye bias was related to spot brightness by breaking 

down the dye bias estimates into groups based on median intensity of the Cy3/green dye.  

Because the experiments are nearly balanced, median intensity in the Cy3/green channel 

serves as a measure of the median amount of cDNA present across samples.  Figure 3 

shows the results.  The significant increasing trend suggests a component of dye bias may 

be attributable to post-normalization median intensity-related effects.  Interestingly, 

global loess normalization, which is designed to address intensity-dependent dye bias on 

an array-by-array basis, reduced this phenomenon slightly but did not eliminate it; in fact, 

loess resulted in a reversal of the direction of the apparent bias (Figure 4), suggesting the 

loess methodology was overadjusting the data.   

 

The observed relation between dye bias and spot intensity may be partly attributed to the 

phenomenon of autofluorescence.  Autofluroescence is the tendency of unlabeled cDNA 

to fluoresce brighter at the lower Cy3/green frequency.  Papers have been published 

describing this phenomenon (Eisinger and Shulman, 1968; Onidas et al., 2002).  Further 

discussion appears in the supplement. 

 

Cross-platform comparison of gene-specific dye bias on cDNA and oligonucleotide 

arrays 
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Unigene identifiers were used to match genes across platforms.  6,056 genes were 

matched in this way.  When multiple oligonucleotide 70-mers matched the same cDNA, 

the first match was used.  Table 5 shows that there was minimal agreement across 

platforms as to the size and direction of gene-specific dye bias for different genes 

(correlation 0.12), whereas there was significant agreement as to the size and direction of 

cell line effects for different genes – indicating that the unigene identifiers are adequately 

matching corresponding genes on the different platforms.  Similarly, agreement across 

platforms based on a p-value cutoff of 0.001 was much smaller for dye bias effects than 

for cell line effects.  Cross-platform concordance of gene-specific dye bias might be 

expected to increase under a more sophisticated feature-matching methodology, e.g., one 

that uses oligonucleotide sequence information to verify the correct cDNA match 

(Mecham et al., 2004); but the relatively good concordance of cell lines indicates that 

overall gene-specific dye bias concordance would likely remain minimal.  In conclusion, 

there is some weak concordance across platforms of gene-specific dye bias.   

 

Discussion 

 

We have analyzed data from both an oligonucleotide and a cDNA microarray experiment 

to characterize dye bias.  We have shown that many genes exhibit statistically significant 

gene-specific dye bias (39% with p-value below .001 on the cDNA arrays), and tend to 

appear brighter on average in one dye compared to the other dye.  Gene-specific dye bias 

was small for the most part, but not insignificant, suggesting that when samples labeled 

with different dyes are being compared, statistical adjustment for this type of dye bias 
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seems advisable.  We showed that failure to adjust for dye bias does effect conclusions 

about differential expression4.  In particular, designs such as the reference design given in 

Figure 1(a) and the balanced block design given in Figure 1(c) appear superior to designs 

such as that given in Figure 1(b), because the design of Figure 1(b) makes it impossible 

to correct for gene-specific dye bias.  The other two designs produce class comparisons 

free of gene-specific dye bias.  Other examples of designs that allow one to correct for 

this type of dye bias can be found in Dobbin et al. (2003a).   

 

Gene-and-sample-specific dye bias appeared statistically significant for a much smaller 

proportion of genes (2% with p-value below .001), although still more than would be 

expected by chance.  Estimated gene expression differences between the cell lines 

produced by analysis of only the forward arrays (with reference labeled Cy3), only the 

backward arrays (with reference labeled Cy5), and all dye swapped arrays, were very 

similar in direction and magnitude, indicating that gene-and-sample-specific dye biases 

were having a minor impact on these estimates.  Thus, gene-and-sample-specific dye bias 

appeared to be of little practical concern.  We also noted that no experimental design or 

statistical analysis will enable one to remove this type of dye bias (as discussed in the 

Results section).  Instead, gene-and-sample-specific dye bias, if it exists, indicates a 

limitation of the accuracy of the technology for a subset of genes.  In particular, gene-

and-sample specific dye bias does not justify systematically dye swapping all arrays in an 
                                                 
4 See the supplemental material for some discussion of why the high proportion of genes 

with gene-specific dye bias produced so little discordance in differential expression calls. 
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experiment, because such a design will not enable one to eliminate the bias.  This type of 

design has also been shown to be inefficient (Dobbin et al., 2003a). 

 

While we have established the existence of gene-specific dye bias and, to a lesser extent, 

gene-and-sample-specific dye bias, the causes of these phenomena remain unclear.  For 

instance, what aspect of the gene-sequence spotted on an array causes the dye bias?  Is it 

the actual sequence of the nucleotides, or the order in which the spot was printed, or the 

size or shape (morphology) of the spot, or autofluorescence, or an inadequacy of the 

linear additive model used to approximate the data, or something else?  If dye bias is 

chiefly related to how the arrays were constructed (location of spots, printing order, size, 

etc.), then one would expect that the bias would be consistent across a set of arrays with 

the same construction, which would result in gene-specific dye bias.  The fact that the 

gene-specific dye bias showed so little concordance across the two platforms we analyzed 

suggests that dye bias may be chiefly related to aspects of the array construction, and that 

therefore it is important to use a homogeneous set of arrays for any microarray 

experiment, and to make dye bias correction within array type if different types or 

versions of arrays are used.  Dye bias related to aspects of the original RNA samples 

would result in gene-and-sample-specific dye bias.  The fact that we observed such a 

small level of this type of bias suggests that most dye bias is not attributable to aspects of 

the original RNA samples.     

 

These results have implications for single-label array experiments, such as Affymetrix 

arrays, if the labeling and scanning technology is the same as or similar to that used here.  
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Gene-specific dye biases will not affect inference in single-label experiments for the 

same reason that they do not affect inference in reference design experiments when 

comparing non-reference samples.  But gene-and-sample-specific dye biases will affect 

inference in both dual-label and single-label systems.  The problematic nature of 

removing the gene-and-sample-specific bias is not improved under a single-label system.  

The fact that gene-and-sample-specific biases are more difficult to detect in single-label 

systems should not be taken as evidence of the superiority of single-label systems with 

regard to gene-and-sample-specific dye bias.  The potential problem of gene-and-sample-

specific dye bias is still there, although, as we have shown, it appears to have a relatively 

minor impact on estimates of interest.  
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Figure Legends 

 

Figure 1:  Examples of dual-label microarray designs.  (a) A reference design comparing 

tumor tissue to normal tissue.  (b) A design comparing tumor tissue to normal tissue.  (c) 

A balanced block design comparing tumor tissue to normal tissue. 

 

Figure 2: Each plot shows the estimated expression effect sizes for all 8,604 genes for 

one of the six cell lines.  X-axis is the estimated effect sizes using all the arrays.  Y-axis 

is the estimated effect sizes using only the forward-labeled arrays.  Drawn on the plots 

are a 45 degree line through the origin and lines +/- 1 above and below this line.  Top row 

is MCF10a, LNCAP and L428 (left to right), and bottom row is SUDHL, OCILY3 and 

Jurkat.  Pearson correlations are 0.91, 0.92, 0.87, 0.84, 0.86, and 0.94. 

 

Figure 3:  Size of the estimated dye bias as a function of median intensity in the green 

(Cy3) channel.  “1st Q” indicates those genes with median normalized intensity in the 

first (lowest) quartile of genes; “2nd Q” indicates genes in the second quartile; etc.  The 

brighter the median green channel intensity, the greater the gene-specific dye bias is in 

the direction of the samples with target labeled green (Cy3) – which is the positive 

direction in this figure.   

 

Figure 4: Loess normalized data:  Size of the estimated dye bias as a function of median 

intensity quartile in the green (Cy3) channel.  The pattern suggests that loess 
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normalization does not remove the dye bias, and appears to over-adjust the data for 

intensity-dependent dye bias.   
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Tables 

 

Cell Line 
Name 

Number of 
oligonucleotide 

arrays (Number with 
reference green/Cy3) 

Number of cDNA Arrays 
(Number with reference 

green/Cy3) 

Cell line description 

MCF10a 4 (2) 4 (2) Human mammary epithelial 
cell line 

LNCAP 4 (2) 4 (2) Human prostate cancer cell 
line 

L428 9 (4) 7 (4) Hodgkin’s disease cell line 
SUDHL 4 (2) 4 (2) Human lymphoma cell line 
OCILY3 5 (3) 5 (3) Human lymphoma cell line 
Jurkat 4 (2) 4 (2) Human T lymphocyte acute 

T cell leukemia cell line 
Total 30 (15) 28 (15)  

 
Table 1: Six cell lines assayed in experiment 
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Cell line 
heterogeneity 
taken into 
account? 

Cell line 
main 
effects 
adjustment 

Significance test  Number of 
genes with 
gene-specific 
p-value <.001 

Median 
absolute value 
of dye bias for 
significant 
genes 

Pooled t-test 893 (10%) 0.28 (1.2-fold) 
Welch t-test 869 (10%) 0.28 (1.2-fold) 
Wilcoxon rank-sum 
test 

901 (10%) 0.43 (1.3-fold) 

No None 

Permutation test5 1014 (12%) 0.67 (1.6-fold) 
     

Pooled t-test 2035 (24%) 0.57 (1.5-fold) 
Welch t-test 1932 (22%) 0.58 (1.5-fold) 
Wilcoxon rank-sum 
test 

2015 (23%) 0.54 (1.5-fold) 

Mean-
centering 

Permutation test5 2281 (27%) 0.56 (1.5-fold) 
    

Pooled t-test 1806 (21%) 0.58 (1.5-fold) 
Welch t-test 1679 (20%) 0.59 (1.5-fold) 
Wilcoxon rank-sum 
test 

1758 (20%) 0.48 (1.4-fold) 

Location 
(mean/median) 
heterogeneity 
only 

Median-
centering 

Permutation test5 2229 (26%) 0.56 (1.5-fold) 
     

Mean-
centering 

Generalized least 
squares6

3388 (39%) 0.46 (1.4-fold) Location and 
scale (variance) 
heterogeneity  Permutation test7 3310 (38%) 0.47 (1.4-fold) 
     
Expected by 
chance 

  9 (0.1%)  

Table 2:  Analyses of gene-specific dye bias.  Using notation from Equation (1), let 

⎥
⎦

⎤
⎢
⎣

⎡
=

cor

cor
cor R

T
Y 2log .  Mean-centering corresponds to the transformation ••−= ccorcor YYZ , 

where ••cY  is the mean over the cell line; similarly, median-centering is ••−= ccorcor YYW ~  

where ••cY~  is the median over the cell line.  T-tests have the form 
SD

YY •••• − 21 , where SD  

                                                 
5 Permutation test based on 10,000 permutations of the dye labels. 
6 Generalized least squares model fit with different error variance for each cell line stratum.  P-values 
calculated via restricted maximum likelihood used to fit the model and conditional F-tests used to assess 
significance.  Likelihood-ratio tests with maximum likelihood estimates (not shown) produced virtually 
identical results. 
7 Permutation test based on 10,000 permutations of the dye labels within cell lines.  Test statistic used is 
weighted sum of t-test numerators, with weights equal to inverse estimated variance for cell line t-test 
numerator.  
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is the estimated standard deviation of the numerator, and W or Z are inserted for Y as 
appropriate.  SD is estimated under the assumption of equal variance for the pooled t-test, 
and unequal variances for the Welch t-test.  Wilcoxon rank-sum test indicates the 
Wilcoxon two-sample test performed on the Y’s, W’s or Z’s as appropriate.  Permutation 
tests are based on pooled t-statistics with 10,000 permutations except as noted. 
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  All data: no dye bias adjustment 
  P-value < .001 P-value > .001 

P-value < .001 4801 (56%) 559 (6%) All data: dye 
bias adjustment P-value > .001 81 (1%) 3163 (37%) 
 
Table 3: cDNA agreement between models with and without gene-specific dye bias 
adjustments included.  P-values are for the F-test of no differential expression among any 
of the 6 cell lines.  “Dye bias adjustment” p-values are from fitting the model 

coroc
cor

cor OC
R
T

Log ε++=⎥
⎦

⎤
⎢
⎣

⎡
2 , and “no dye bias adjustment” p-values are from fitting the 

model corc
cor

cor C
R
T

Log ε+=⎥
⎦

⎤
⎢
⎣

⎡
2 .  The p-values are from the hypothesis test that each  is 

zero. 

cC
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 Total estimated 
cell line effects 

Number with 
discrepancy 
larger than 1 

Number with 
discrepancy 
larger than 2 

MCF10a 8604 20 (0.2%) 0 
LNCAP 8604 4 (0.05%) 0 
L428 8604 42 (0.5%) 4 (0.05%) 
SUDHL 8604 29 (0.3%) 0 
OCILY3 8604 50 (0.6%) 5 (0.06%) 
Jurkat 8604 22 (0.3%) 0 
 
Table 4: Number of large discrepancies between cell line effect size estimates based on 
the full dataset compared to estimates based on the forward-only arrays. 
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Source of effect Cross-platform 
correlation between 
average gene effects 

Cohen’s Kappa based 
on 2x2 table using 

0.001 p-value cutoff 
   
Dye Bias 0.12 0.06 (0.03,0.08) 
   
MCF10a 0.74 
LNCAP 0.72 
L428 0.66 
SUDHL 0.69 
OCILY3 0.64 
JURKAT 0.71 

 
 

0.30 (.28,.32) 

Table 5:  Concordance across platform of gene-specific dye bias and of cell line effects:  
Cross-platform agreement between gene-specific effects of dye bias, and each of the 
individual cell line effects, as measured by pairwise Pearson correlation of the effect 
estimates, and Cohen’s Kappa statistic for 2x2  tables created by using p-value cutoff of 
0.001 for F-tests.  Agreement based on 6,056 genes matched using unigene identifiers.  
For genes with multiple sequences represented on the oligonucleotide arrays, the first 
sequence in the file was used.  Format of Cohen’s kappas is: Kappa value (95% 
confidence interval).  2x2 tables appear in supplement (Table 5). 
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Figures 

 

 

(a) 
 Array 1 Array 2 Array 3 Array 4 Array 5 Array 6 
Cy3 Tumor Tumor Tumor Normal Normal Normal 
Cy5 Reference Reference Reference Reference Reference Reference 
 
(b) 
 Array 1 Array 2 Array 3 Array 4 Array 5 Array 6 
Cy3 Tumor Tumor Tumor Tumor Tumor Tumor 
Cy5 Normal Normal Normal Normal Normal Normal 
 
(c) 
 Array 1 Array 2 Array 3 Array 4 Array 5 Array 6 
Cy3 Tumor Normal Tumor Normal Tumor Normal 
Cy5 Normal Tumor Normal Tumor Normal Tumor 
 
 
Figure 1 
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Figure 2 
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Figure 3  
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