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The traditional frequentist approach does not seem
relevant in the planning stages. Even though the
planning of the clinical trial uses a Bayesian for-
mulation, we do not necessarily advocate the use of
Bayesian methods of statistical analysis. Our devel-
opment leads to assigned type I and type II errors
as well as the required sample size. The assigned
type I error should be used to assess statistical sig-
nificance. Thus we have a sample size formulation
which is Bayesian, but the analysis may proceed in
the usual frequentist mode.
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Comment

Richard Simon

The paper by Lee and Zelen (L&Z) provides a nice
framework for thinking about important aspects of
the planning of clinical trials and the interpretation
of results of such trials. The interaction of frequen-
tist and Bayesian concepts in the paper also pro-
vides an opportunity to highlight the contrasts and
similarities of these approaches.

Determination of sample size is an important as-
pect of planning a clinical trial. The sample size is
usually established to obtain a specified statistical
power for rejecting the null hypothesis when a spec-
ified alternative hypothesis is true. This formalism
is often abused by specifying unrealistically large
alternative hypotheses for the power calculation.
This is done in order to attempt to justify doing a
trial by an organization that does not have sufficient
patient accrual potential to conduct independent
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clinical trials. As a result, in some fields there is a
glut of small clinical trials with inadequate power
for detecting treatment effects that might realisti-
cally be expected to exist. In such a setting, many
of the “positive” trials reporting statistically signifi-
cant differences are likely to be false positives. This
phenomenon was also previously noted by Staquet,
Rozencweig, Von Hoff and Muggia (1979) and Simon
(1982), using the sensitivity—specificity derivation
employed by Lee and Zelen in their current paper. I
have previously referred to this phenomenon as the
“thermodynamics of clinical trials” (Simon, 1982).
In the current paper, L&Z propose to use this
same approach to establish the sample size of a clin-
ical trial. The accept-reject formulation employed
by L&Z is not adequate, however, for ensuring that
frequentist interpretations of clinical trial results
are associated with strong Bayesian support for the
acceptance or rejection of hypotheses about treat-
ment differences. I would like to present a sim-
ple alternative development of the ideas raised by
L&Z which I believe is more appropriate for aligning
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Bayesian and frequentist analyses and for planning
sample size.

Let & denote the true treatment effect, as in L&Z.
Let & denote the maximum likelihood estimate of
5. We will assume that & is sufficient for & and
that & | 6 ~ N(8, s?), where the experimental vari-
ance s depends on the sample size but is other-
wise known. In practice, s> will be estimated, but
we will ignore this additional variability. In order to
present the concepts involved in a clear manner that
avoids technical complexities, we will assume that
6 has a two-point prior distribution which assigns
probability 1 — 6 to the null hypothesis that § = 0
and probability 6 to an alternative hypothesis that
8 = 8;. More complex prior densities are easily ac-
commodated but the development is more complex
and will not be reported here. L&Z argue that the
prior distribution must be symmetric about zero for
the clinical trial to be “ethical.” Not all biomedical
ethicists agree with this position. The statistics of
the outcomes of large numbers of randomized clini-
cal trials are not likely to be symmetric about zero
and in that sense a symmetric prior is inappropri-
ate. Clinical trials have multiple endpoints. Most
major clinical trials compare a new treatment to a
standard treatment. Frequently for trials of cancer
treatments, the new treatment is more toxic and
will not be adopted unless it is better by a non-
negligible amount compared to the control regimen.
Often the new treatment is expensive and will only
be adopted if it is superior to the standard. Often
the new regimen is not approved for marketing and
is only available in a clinical trial. There is also the
issue of whose prior should be used for planning the
trial. Different audiences have different a priori de-
grees of skepticism or enthusiasm for the effective-
ness of the new treatment relative to the control
(Spiegelhalter, 1994). Hence, it seems inadequate to
assume that the prior for the primary endpoint of
an “ethical” clinical trial must be symmetric about
Zero.

L&7Z claim to present a Bayesian analysis, but
they do not specify a prior on specific values other
than 6 = 0. They also do not utilize a proper like-
lihood. A likelihood specifies the probability density
of the data for a specified value of the parame-
ters. The sensitivity—specificity derivation used by
L&Z specifies the probability of an infinite interval
{0/8 > kq_q/2), but this is not a likelihood function.

The posterior probability of the null hypothesis
having observed & is easily shown to be

» ~ -1
0 \HB-5)/s)
(D {l-i- (1_ 0) 5(5/5) } ;

where ¢ denotes the standard normal density func-
tion. The ratio of normal densities is the Bayes fac-
tor

P 9 —d0)/s)
$(0/s)
In order to have the posterior probability of the null

hypothesis given the data be less than 0.1, expres-
sion (1) implies that

0
(2) mBF >9.

Most major clinical trials are planned to have 80%
or 90% power for rejecting the null hypothesis at
a two-sided 5% significance level when the alterna-
tive hypothesis is true. Using the usual sample size
formula, this implies

81/8=ki o2+ ki p.

Hence for most major clinical trials, §;/s ~ 3.

The probability of obtaining a “positive” result fa-
voring the new treatment and statistically signifi-
cant at the two-sided 5% level is approximately

Pr(S/s > 2) = (1— 0)d(—2s/s) + 0@(81 ; 2s>’

where ® denotes the standard normal distribution
function. For 6,/s ~ 3, we obtain

(3) Pr(§/s > 2) = (1 — )®(—2) + 6®(1).

L&Z report that about 30% of phase III trials of
the Eastern Cooperative Oncology Group are statis-
tically significant. Assuming that the vast majority
of these are significantly in favor of the new treat-
ment, equating (3) to 0.30 and solving for 6 gives
approximately 6 = 0.33.

For 0 = 0.33, it follows from (2) that in order to
have the posterior probability of the null hypothe-
sis 0.1, we require BF = 17.7. If the sample size
is planned in the frequentist manner as described
above for most trials, then 6;/s ~ 3 and BF =
17.7 corresponds to 8/s = 2.46. Hence, in order to
have any “statistically significant” result favoring
the new treatment be associated with a posterior
probability of the null hypothesis of no greater than
0.1, the critical value of 2.46 should be used for sta-
tistical significance. This corresponds to a two-sided
significance level of 0.014. This is somewhat differ-
ent from the claim of L&Z that a value of « in the
range of 0.025-0.030 is appropriate.

L&7Z have proposed two requirements for plan-
ning sample size. The first is that the finding of
“statistical significance” be associated with a small
posterior probability for the null hypothesis. The
preceding paragraphs indicate that this leads to the
requirement that the significance level should be no
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greater than a two-sided 0.014. L&Z also proposed
that the lack of finding of statistical significance
should be associated with a large posterior probabil-
ity for the null hypothesis. This is not uniformly pos-
sible because an outcome that is almost statistically
significant carries approximately the same posterior
probability as one that is just barely statistically
significant. It is an inherent flaw in the Neyman—
Pearson theory of hypothesis testing to sharply dis-
tinguish between falling just barely on one side of
the rejection region boundary compared to falling
just barely on the other side. It is an embarrass-
ment to many biostatisticians to see biomedical in-
vestigators infer that since p = 0.06, the results
are not statistically significant and the null hypoth-
esis should be accepted. The embarrassment should
not be for statistical naivete of the investigator, but
rather for the inadequacy of the inferential frame-
work that the field of statistics has provided for in-
terpreting data. We should be careful not to force
this defect onto Bayesian methods.

There are some outcomes that result in a high
posterior probability for the null hypothesis. What
is the largest value of the outcome & that results in
a posterior probability of the null hypothesis of 0.9?
With 0 = 0.33, we obtain from (2) that the outcome
should correspond to a BF of 0.22 or less. This is less
evidence against §; than was required for rejecting
the null hypothesis (i.e., 1/0.22 = 4.6 < 17.7) be-
cause the prior probabilities favor the null hypoth-
esis. For a trial designed in the conventional way
with 8,/s ~ 3, BF = 0.22 corresponds to 8/s ~ 1. So
an outcome corresponding to a “z value” no greater
than 1 provides strong support against the alterna-
tive hypothesis used to design the trial when one
considers the prior probabilities.

It follows from the above, that for a convention-
ally designed clinical trial, an outcome with a “z
value” z = §/s greater than 2.46 provides adequate
support for rejecting the null hypothesis, and a z
value less than 1.0 provides adequate support for re-
jecting the alternative hypothesis. Whether the con-
ventionally defined sample size is adequate may be
addressed by computing the probability that the
clinical trial provides a result that represents strong
support for rejecting either the null or alternative
hypothesis. As noted above, an inconclusive result
corresponds to 1 < &§/s < 2.46. We compute the prob-
ability of an inconclusive result with regard to the
prior probability distribution, and find it to equal
0.197. If this is deemed too large, one can select a
smaller value of s, corresponding to a larger sam-
ple size, recalibrate the upper and lower limits of
5/s that correspond to strong posterior support for

either the null or alternative hypothesis and then
recompute the probability of an inconclusive result.
One can automate this process to obtain any desired
probability of an inconclusive result.

The above analysis provides a consistent Bayes-
ian approach to planning the interpretation of re-
sults and planning sample size. The inference is
based on the posterior probability of the null hy-
pothesis given the data, as is required by Bayes
theorem, not given that the test statistic was at an
unspecified location in a semiinfinite interval. The
approach is also Bayesian because the sample size
is determined based on a figure of merit, the prob-
ability of obtaining conclusive results, which is an
average with regard to the prior distribution. For
the calculations above, this results in a frequentist
power of only 0.71, but power is a non-Bayesian no-
tion. The approach of L&Z uses the frequentist ap-
proach of establishing sample size to achieve a spec-
ified power under the alternative hypothesis.

The conclusion of the analysis presented here is
that clinical trials whose sample size is based on the
frequentist approach with §,/s ~ 3 provide about
an 80% probability of providing strong enough
evidence to reject either the null or alternative hy-
pothesis, where the evidence is based on Bayesian
analysis. Although the conventional sample size
planning approach appears adequate, our analysis
indicates that the usual frequentist interpretations
of the data are not adequate. Our analysis also
shows that a critical value for significance should
be about 2.46 and that only z values less than 1
represent sufficient support for rejecting the alter-
native hypothesis in favor of the null. Of course,
whether the approach to sample size planning is
sensible depends on whether a sensible value of
the alternative hypothesis is specified. This value
should represent the smallest treatment difference
which is of medical significance, given the costs
and toxicities of the new treatment. For example,
in the comparison of survival distributions with
proportional hazards, § may represent the natural
logarithm of the hazard ratio and a §; = In(1.33),
representing a 25% reduction in the hazard rate is
often used and considered reasonable. In this case,
if 8;/s ~ 3, then s = 0.095 and this corresponds
to observing approximately 444 events, using the
approximation s? = 4/(# events). The conclusions
derived here are based on the simple two-point
prior distribution used. This approach to sample
size planning and results interpretation can be
carried out with more general prior distributions.
The simple two-point model was used here only to
clarify the concepts involved.



