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A method for utilizing co-primary efficacy 
outcome measures to screen regimens for  
activity in two-stage Phase II clinical trials

Michael W Silla,b, Larry Rubinsteinc, Samuel Litwind and Greg Yotherse,f

Background Most Phase II clinical trials utilize a single primary end point to deter-
mine the promise of a regimen for future study. However, many disorders mani-
fest themselves in complex ways. For example, migraine headaches can cause pain, 
auras, photophobia, and emesis. Investigators may believe that a drug is effective at 
reducing migraine pain and the severity of emesis during an attack. Nevertheless, 
they could still be interested in proceeding with the development of the drug if it is 
effective against only one of these symptoms. Such a study would be a candidate for 
a clinical trial with co-primary end points.
Purpose The purpose of the article is to provide a method for designing a single 
arm, two-stage clinical trial with dichotomous co-primary end points of efficacy that 
has the ability to detect activity on either response measure with high probability 
when the drug is active on one or both measures, while at the same time rejecting 
the drug with high probability when there is little activity on both dimensions. The 
design enables early closure for futility and is flexible with regard to attained accrual.
Methods The design is proposed in the context of cancer clinical trials with tumor 
response and progression-free survival (PFS) status after a certain period. Both end 
points are assumed to be distributed as binomial random variables, and uninteresting 
probabilities of success are determined from historical controls. Given the necessity 
of accrual flexibility, exhaustive searching algorithms to find optimum designs do not 
seem feasible at this time. Instead, critical values are determined for realized sample 
sizes using specific procedures. Then accrual windows are found to achieve a design’s 
desired level of significance, probability of early termination (PET), and power.
Results The design is illustrated with a clinical trial that examined bevacizumab 
in patients with recurrent endometrial cancer. This study was negative by tumor 
response but positive by 6-month PFS. The procedure was compared to modified 
procedures in the literature, indicating that the method is competitive.
Limitations Although the procedure allows investigators to construct designs with 
desired levels of significance and power, the PET under the null hypothesis is smaller 
than for single end point studies.
Conclusions The impact of adding an additional end point on the sample size is 
often minimal, but the study gains sensitivity to activity on another dimension of 
treatment response. The operating characteristics are fairly robust to the level of 
association between the two end points. Software is available online. Clinical Trials 
2012; 9: 385–395. http://ctj.sagepub.com
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Introduction

Phase II studies evolved over time to simultaneously 
manage several goals of a clinical trial while main-
taining their modest sample size. Initially, they 
were simple studies, designed to distinguish between 
two probabilities of response with α level of signifi-
cance and power (1–β). Gehan [1] proposed a design 
with a futility rule in 1961, which rejected a drug 
early in a clinical trial if there were no observed 
responses in the first stage. A more general design 
that allows multistage testing for arbitrary values of 
πr0 and πr1 was provided by Fleming [2]. Simon [3] 
then proposed a two-stage design that had either 
optimal or minimax properties in 1989. His solu-
tion was extended with flexible designs that allowed 
for deviations from the targeted sample sizes in 
1998 [4,5].

In addition to incorporating flexible, interim 
futility analyses, several authors proposed utilizing 
more than one primary end point. Bryant and Day 
[6], Thall and Cheng [7], and Conaway and Petroni 
[8] use the number of patients who have severe 
adverse events in their decision rules for recom-
mending further study.

Some authors refined response to therapy into 
three ordered classes. In the arena of oncology, 
patient responses can be classified as progressive 
disease, stable disease, and tumor response so that 
therapies capable of reducing the proportion with 
progressive disease or increasing the proportion 
with tumor responses are of interest [9]. Other 
authors differentiate complete tumor response from 
partial responses and study the impact of employ-
ing both of these positive outcomes to trial charac-
teristics [10–12].

Another approach examined in the literature is 
the utilization of two (or more) fundamentally dif-
ferent measures of treatment efficacy [13,14]. 
Examples of co-primary efficacy end points include 
the severity of angina pectoris and shortness of 
breath for studies involving coronary artery disease. 
Unlike the gradation of a univariate response into 
separate categories, these designs consider the mul-
tivariate nature of response to treatment that is 
complicated by variable associations and study 
objectives. Bayesian approaches have also been pro-
posed with applications in jointly evaluating effi-
cacy and toxicity as well as multiple efficacy 
outcomes [15,16]. The current article provides 
investigators with a method for obtaining a two-
stage trial design with an interim futility rule where 
interest is focused on detecting activity on either of 
two primary response variables. The design is also 
flexible with regard to the attained sample size. That 
is to say, the design does not require a precise sam-
ple size for each stage. Instead, accrual windows (or 
allowable accrual ranges) like those seen in Chen 

and Ng [4] are provided along with design charac-
teristics such as average power or minimum power 
(over the accrual range).

Methodology

Our methodology will be developed in the context 
of Phase II cancer clinical trials. In this setting, 
many drugs have been evaluated with tumor 
response as defined by Therasse et al. [17]. The prob-
ability of response will be designated with πr. 
Another variable of interest in Phase II oncology is 
the probability that a patient survives without expe-
riencing a progression of disease for a specified 
period of time. We will use 6 months as a matter of 
convenience and denote this binomial variable as 
‘6-month progression-free survival (PFS)’. The prob-
ability of this event will be designated with πs.

The null hypothesis is formulated as follows: H0 : 
πr ≤ πr0 and πs ≤ πs0, where πr0 and πs0 are specified 
values (obtained from historical data) that are 
believed to be uninteresting or comparable to the 
current standard of care. The alternative hypothesis 
is formulated as follows: H1 : πr ≥ πr1 = πr0 + ∆r or πs ≥ 
πs1 = πs0 + ∆s, where ∆r and ∆s are the (minimal) clin-
ically significant improvements in the proportion 
responding and with 6-month PFS, respectively.

Relationships between critical values and 
the design’s operating characteristics

The joint distribution of the number of patients 
who respond or have 6-month PFS is provided along 
with the parameters in Table 1. Note that n(k) is the 
sample size for stage k = 1, 2 of the trial, Xr(k) is the 
number of patients who have an objective response 
in stage k, and Xs(k) is the number of patients with 
6-month PFS. It can be shown that the joint distri-
bution of Xij(k), where i = 1,2 and j = 1,2, is multino-
mial with the corresponding parameters listed in 
Table 1 under the restrictions π22 = 1-π11-π12-π21 and 
X22(k) = n(k) –X11(k) – X12(k) – X21(k). The probability 
mass function (PMF) of this distribution is
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The drug is rejected at Stage 1 if Xr(1) ≤ Cr(1) and 
Xs(1) ≤ Cs(1) or at Stage 2 if Xr ≤ Cr and Xs ≤ Cs where 
Cr(1) and Cs(1) are the Stage 1 critical values for the 
number of patients who have a response and the 
number with 6-month PFS, respectively; Xr = Xr(1) + 
Xr(2), Xs = Xs(1) + Xs(2) , and Cr and Cs are the critical 
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values at the end of Stage 2. The following relation-
ships hold in general

X X Xk r k k12 11( ) ( ) ( )= −

X X Xk s k k21 11( ) ( ) ( )= −

X n X X Xk k k k k22 11 12 21( ) ( ) ( ) ( ) ( )= − − −

To determine the probability of rejecting the 
drug after a particular stage using equation (1), it is 
helpful to define a PMF and a cumulative distribu-
tion function (CDF) in terms of n(k),Xs(k), and Xr(k).
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The probability of early termination (PET), which 
is the probability of rejecting the drug after the first 
stage, can be calculated simply with the CDF and by 
using the first-stage parameters, that is

PET F n C Cr s= ( )( ) ( ) ( )1 1 1, ,

where n(1) is the first-stage sample size. In order for 
the drug to be rejected after the second stage, it is 
required that the outcome after the first stage does 
not lie within the drug’s rejection region (i.e., Xr(1) ≤ 
Cr(1) and Xs(1) ≤ Cs(1)) but that the outcome in the 
second stage lies within the drug’s rejection region 
(i.e., Xr ≤ Cr and Xs ≤ Cs). In order for this condition 
to be true, it is required that the following condi-
tion hold: Xr(1) > Cr(1) or Xs(1) > Cs(1) and, simultane-
ously, that Xr(1) ≤ Cr and Xs(1) ≤ Cs for the first-stage 
outcome. Using Figure 1, this region corresponds to 
the union of regions J2 and J3 (note that it is possible 
for Cs and Cr to be greater than n(1)).

To calculate the probability that the drug is 
rejected in the second stage, it is important to note 
that Xr - Xr(1) and Xs - Xs(1) are marginal totals equal 
to Xr(2) and Xs(2) whose cells have a multinomial dis-
tribution with the parameters listed in Table 1 with 
a sample size of n(2). Xs ≤ Cs if and only if Xs – Xs(1) ≤ 
Cs –Xs(1) , and Xr ≤ Cr if and only if Xr – Xr(1) ≤ Cr –Xr(1). 
It follows that the probability of rejecting the drug 
in Stage 2 is

P

f n X Xr s
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where J2 ∪ J3 is Region J2 union Region J3 and n = n(1) 
+ n(2). The total probability of rejecting the drug is 
the sum of the probabilities of rejecting the drug 
in each stage. That is, P(Rejecting drug) = PET + 

Table 1.  Parameters for the associated probabilities of tumor 
response and 6-month PFS are specified on the left side.  For 
example, the joint probability of having a response and 6-month 
PFS is given by p11, and the marginal probability of having a 
response is given by pr = p11+ p12. The number of people in 
the trial at stage k with these qualities is provided on the right 
side.  For example, the number of people in stage k with tumor 
response and have 6-month PFS is provided by X11(k).

Table for parameters Table for data  

  PFS > 6 months PFS > 6 months  

Yes No Yes No  

Response Yes π11 π12 πr X11(k) X12(k) Xr(k)

  No π21 π22 π2+ X21(k) X22(k) X2+(k)
  πs π +2 Xs(k) X+2(k)

 

PFS: progression-free survival.
Figure 1.  Sample space for Xr(1) and Xs(1) divided into several 
important regions. Region J1 is the set of outcomes that lead the 
trial into early termination. Regions J2 and J3 are areas that allow 
the trial to proceed to Stage 2 but do not necessarily lead to the 
rejection of the null hypothesis. The complement of J1 ∩ J2 ∩ J3 
would ultimately lead to rejection of the null hypothesis.

(2)

(3)

(4)
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P(Rejecting drug in Stage 2), and the power of the 
study is simply the probability of accepting the drug 
or alternatively rejecting H0.

Power Reject RejectdruginStage2= ( ) = − + ( ) P H PET P0 1

Search for designs with desirable 
operating characteristics

Important features of the design include a high 
PET under the null hypothesis, low power under 
the null hypothesis, and high power under the 
alternatives. This design is useful for trials where 
the investigators want to detect true activity on 
either end point with high probability. There are 
three design parameters that are believed to be of 
particular interest
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where α is the probability of a type I error, βr is 
the probability of a type II error when the agent 
is clinically active by response but is not capable 
of stabilizing the disease for long periods, and βs 
is the probability of a type II error when the regi-
men is clinically active by stabilization of disease 
but does not significantly reduce tumor burden. 
For a particular set of critical boundaries, Cs(1),Cr(

1),Cs, and Cr, the following quantities can be 
found
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where ‘TPT’ stands for the total probability of reject-
ing the treatment.

Optimal and minimax designs

Exhaustive searching algorithms for optimal or 
minimax designs have not been developed for co-
primary end points yet. Conceptually, they can be 
developed first by finding the set of designs that 
meet the specified requirements of the investigator 
such as α ≤ 0.10, βr ≤ 0.10, and βs ≤ 0.10. To find the 
optimal design among all designs meeting the 

investigator’s specifications, the design associated 
with the minimal value of E[Nt] under the null 
hypothesis would be selected where

E N PET n PET n n

E N n PET

t H H
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where Nt is the total sample size, which is a random 
variable equal to n(1) with probability PETH0 and n = 
n(1) + n(2) otherwise. The minimax design would be a 
design (with specifications) associated with the 
smallest n, called min{n}. If several designs existed 
with n = min{n}, then the one that minimizes 
equation (10) would be utilized.

Flexible optimal and flexible minimax designs

Flexible optimal designs, developed in a manner 
similar to Chen and Ng [4], would provide designs 
where accrual windows are allowed such as nL ≤ 
N(1) ≤ nU and NL ≤ N ≤ NU, where N(1) and N are the 
first-stage and total sample sizes, respectively. N(1) 
and N are random variables with realized values 
equal to n(1) and n, respectively. The size of these 
windows is usually eight patients wide. Assuming a 
uniform accrual distribution (e.g., P(N(1) = n(1)) = 
1/8 for nL ≤ n(1) ≤ nU and P(N(1) = n(1), N=n|Trial 
passed Stage 1) = 1/64), these designs can be char-
acterized by mean values of α, βr, and βs over all 
possible accrual combinations. Alternatively, the 
design can be characterized by more conservative 
values of max {α}, max{βr}, and max {βs}. Then, a 
searching algorithm can be developed in a manner 
similar to the ‘rigid’ designs as discussed earlier. 
The implementation of these ideas is challenging 
because the total number of designs is large.

A Green–Dahlberg searching algorithm

Green and Dahlberg [5] proposed a simple, flexible 
design for clinical trials that utilize a single, dichoto-
mous primary end point. Their design tests a one-sided 
alternative hypothesis against the null hypothesis 
(stating the drug is inactive) after the first stage. If 
they are able to reject the alternative hypothesis, they 
declare the drug to be unworthy at the interim analy-
sis. Otherwise, they continue to the second stage.

We propose a similar method for the interim 
futility. Specifically, we propose using the critical 
values Cr(1) and Cs(1) that maximize PETH0 from 
among all designs that limit PETHr ≤ βr/2 and PETHs 
≤ βs/2 for a particular, realized first-stage sample size 
n(1). For purposes of computational speed, these val-
ues are calculated under the assumption that Xr(1) is 
independent of Xs(1).

(9)
(10)
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If the design proceeds to the second stage, an 
eventual sample size of n patients will be realized. We 
propose several methods (with available software) for 
determining the critical values at the final stage, Cr 
and Cs. The first method utilized in clinical trials 
(called the minimum C method) found Cr and Cs 
such that the following cost function was minimized

C TPRT TPRT TPRTH Hr Hs= −( ) + ( ) + ( )1 0
2 2 2

These decision rules tend to yield satisfactory 
designs if α ≈ βr ≈ βs is desired. Some researchers may 
prefer designs with α ≤ 0.05 and βr ≈ βs ≈ 0.20. To 
help achieve designs with characteristics such as 
these, an ‘alpha restricted method’ is offered. This 
method searches for a Cr and Cs that minimizes the 
quantity, max{TPRTHr,TPRTHs}, among all designs 
where TPRTH0 ≥ 1- α, assuming that Xr(i) is independ-
ent of Xs(i),i = 1,2.

This decision rule may not yield a design with 
precisely the desired operating characteristics for 
the realized sample sizes obtained in the clinical 
trial, n(1) and n, but a design that follows these pro-
cedures will yield unambiguous decision criteria. 
When n(1) and n deviate from the targeted values, 
say n*

(1) and n*, then the realized operating charac-
teristics should not be substantially different from 
the planned study characteristics as long as the 
deviations are relatively small.

Searching for flexible designs that obtain 
the planned α, βr, and βs

The first step in obtaining a flexible design is the 
tabulation of Cr(1), Cs(1), Cr, and Cs along with the 
design’s operating characteristics for all values of n 
such that 25 ≤ n ≤ 100 (or some other suitable range) 
and 15 ≤ n(1) ≤ n - min{n(2)} (where min{n(2)} is the 
minimum Stage 2 sample size).

The next step is to characterize the flexible 
designs by the minimum values of N(1) and N (i.e., 
by nL and NL), where nL ≤ N(1) ≤ nU, NL ≤ N ≤ NU, nU = 
nL + (w1-1) , NU = NL + (w2-1), and w1 and w2 are the 
allowable accrual range (typically w1 = w2 = 8). The 
characterization can be done with mean values of 
PETH0, TPRTH0, TPRTHr, and TPRTHs. Alternatively, 
they can be characterized by the min{PETH0}, min 
{TPRTH0}, max{TPRTHr}, and max{TPRTHs}.

The subsequent design criterion is to require the 
average PETH0 or the min{PETH0} to be at least some 
minimal value and find the smallest nL where this 
criterion is satisfied. Given a fixed first-stage sample 
size, the final step is to find the smallest value of NL 
so that the average (or maximum values) of TPRTHr 
and TPRTHs is ≤ βr and βs, respectively.

Once a design is found under the assumption of 
independence, it is characterized under different 
degrees of association. Investigation has shown that 
PETH0 tends to be moderately dependent on the level 
of association between the two end points, whereas 
TPRTHr and TPRTHs tend to be fairly robust against 
this nuisance parameter [6,13]. Also, it can be shown 
that both PETH0 and TPRTH0 are higher for the posi-
tive association of the two end points (the anticipated 
relationship) than for independence since, for posi-
tively correlated co-primary end points, the probabil-
ity that both will be discouraging is greater than the 
product of the individual probabilities that each will 
be discouraging. This is an important characteristic 
since it assures that assuming independence of the 
two end points is conservative in the sense that this 
assumption yields an upper bound on type 1 error 
and a lower bound on PETH0, assuming that viola-
tions of this assumption are always in the direction of 
positive association of the two end points. Programs 
and instructions can be downloaded from http://
www.gog.org/sdcstaff/MikeSill/ and clicking on the 
link for ‘co-primary Phase II studies’.

Illustration of study design for 
GOG 0229E
Study design

The first study that utilized the proposed methods 
was a protocol called GOG 0229E, which investi-
gated the effects of bevacizumab on patients with 
recurrent or persistent endometrial cancer. The val-
ues for design parameters of GOG 0229E (πr0 and 
πs0) were obtained from the results of a series of 
prior protocols in GOG 0129 and GOG 0229 (see 
Table 1 in the published results of this study by 
Aghajanian et al. [18] for further details). The 
patients enrolled into GOG 0229E were expected to 
behave similar to those eligible in the historical 
studies if the agent was not clinically active.

The null hypothesis was formulated as follows:  
H0 : πr ≤ 0.10 and πs ≤ 0.15. With ∆r = 0.20 and ∆s = 
0.20 considered clinically significant, the alternative 
region of interest is specified with H1 : πr ≥ 0.30 or  
πs ≥ 0.35. A design was found using the ‘Minimum C 
method’ along with using average values of PETH0, 
TPRTH0, TPRTHr, and TPRTHs. The accrual window for 
GOG 0229E was only five patients wide (in contrast 
to the current designs of eight patients). The targeted 
accrual for the first stage was set to 19 eligible and 
evaluable patients. The cumulative targeted accrual 
for the second stage was set to 42 patients. The criti-
cal values for each stage are provided in Table 2.

The operating characteristics of these designs are 
provided in the following using the usual definition 

(11)
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of power in three relatively extreme cases: (1) when 
response is independent of 6-month PFS and (2) 
when there is a relatively high (or full) association 
between these outcomes. The actual association is 
believed to be within this range. To assess the oper-
ating characteristics when the two primary end 
points are not independent, the probability calcula-
tions were done with the assumption that the joint 
probability was π11 = 0.90 · min{πr,πs} or min {πr,πs}, 
which carries a fairly high degree of association. As 
can be seen from this example in Table 3, the power 
of the study is not highly dependent on the level of 
association between response and PFS at 6 months.

Study results

The results of the study are published by Aghajanian 
et al. and reproduced here for illustrative purposes 
[18,19]. The study had an unusually high accrual 
rate for this population with many institutions 
enrolling patients in the last week before study clo-
sure. The first stage of the study enrolled 23 patients 

with 2 patients being excluded for not meeting eligi-
bility criteria leaving 21 eligible and evaluable 
patients. Of these, one patient responded and five 
had 6-month PFS. Based on Table 2 (Cr(1) = 2 and Cs(1) 
= 3) with evidence of good tolerability, a decision 
was made to open the study to the second stage.

Stage 2 accrued 33 additional patients with 2 
exclusions based on eligibility criteria, leaving a 
cumulative accrual of 52 patients. This sample size 
fell outside the targeted window, so a specific rejec-
tion boundary had to be calculated for this particu-
lar accrual. Using the methodology listed earlier 
with the first-stage accrual, the second-stage critical 
boundary was easily adjusted to reflect the larger 
cohort (Cr = 9 and Cs = 12). The larger sample size 
provided more information to reduce the error 
probabilities (e.g., α = 0.066, βr = 0.039, and βs = 
0.058 under independence, and α = 0.053, βr = 
0.047, and βs = 0.066 under high association). Figure 2 
provides power curves of the parameter πs for the 
realized sample size at various values of πr. When πr 
is small and in the null parameter space, power is 
small when πs ≤ 0.15 but increases to about 95% 
when πs = 0.35. When 0.10 < πr = 0.20 < 0.30, the 
response rate is between the null value and the min-
imal threshold, so power is about 60% when πs ≤ 
0.15 but increases to 95% as πs ¯ 0.35. Finally, 
when πr = 0.30, which is in the alternative space, 
power is high regardless of the value of πs. Figure 3 
provides a contour plot of the power function.

The observed number of patients with responses 
or who had 6-month PFS was 7 (13.5%) and 21 
(40.4%), respectively. Since Xs = 21 > 12 = Cs, the 
agent was deemed active and warranted further 
investigation [18,19]. The regimen’s response rate 
was close to the null value of 10% and was insuf-
ficient (on its own merits) to open the study to 

Table 2.  Table of critical values for Stage 1 and Stage 2.  The critical 
values depend on the number of people recruited at each stage.

n(1) Stage 1

(Cr(1), Cs(1))

Stage 2

(Cr, Cs) n

  40 41 42 43 44

17 (2,2) (7,9) (7,9) (7,10) (7,10) (8,10)
18 (2,2) (7,9) (7,9) (7,10) (8,10) (8,10)
19 (2,3) (7,9) (7,9) (7,10) (8,10) (8,10)
20 (2,3) (7,9) (7,9) (7,10) (8,10) (8,10)
21 (2,3) (7,9) (7,9) (7,10) (8,10) (8,10)

Table 3.  Average power and PET of the study when the 
variables are independent (e.g., π11 = πr · πs), in the top set, and 
when they are partially dependent (e.g., π11 = 0.90min{πr,πs}), 
and fully dependent, π11 = min{πr,πs}, in the bottom set

Value of π11 πr πs Power (%) PET (%)

πr·πs 0.10 0.15 9.0 41.3
  0.30 0.15 93.4 2.8
  0.10 0.35 92.2 2.7
  0.30 0.35 99.5 0.2
0.90min{πr,πs} 0.10 0.15 7.2 52.5
  0.30 0.15 91.8 4.7
  0.10 0.35 91.4 3.7
  0.30 0.35 96.1 1.8
min{πr,πs} 0.10 0.15 6.8 54.5
  0.30 0.15 91.7 4.9
  0.10 0.35 91.4 3.8
  0.30 0.35 94.7 2.6

PET: probability of early termination.

Figure 2.  Power curves for πs when the true response rates are 
1%, 10%, 20%, and 30% for the realized sample size for GOG 
0229E, which had sample sizes of 21 and 31 patients in Stages 
1 and 2, respectively. The calculated power was done under the 
assumption of independence.
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the second stage or declare it worthy of further 
investigation.

Comparisons with other 
procedures
Alternative procedures

To compare the methods presented in this article to 
simple modifications of existing procedures, an 
adjusted Simon’s procedure was examined. Simon’s 
procedure can be adjusted for a co-primary design 
by providing the algorithm 1/2 the intended prob-
ability of a type I error (α). For example, if the 
desired overall probability of a type I error in a co-
primary design is 10%, then the user would enter 
0.05 for α into the program. This method approxi-
mately limits the overall study’s statistical size of 
the co-primary procedure to approximately α. It 
should be noted, however, that the study’s size is 
not guaranteed to be strictly less than α as suggested 
by a Bonferroni correction since an interim analysis 
using two variables for proceeding onto Stage 2 can 
substantially increase the probability of proceeding 
to Stage 2. Yet, the rule works fairly well in practice. 
The intended probability of a type II error (β) was 
not adjusted since the investigator is expected to  
be interested in detecting activity on either scale 
with the desired level of power (1 − β). When the 
null probabilities for both scales are equal with the 
same levels of clinical significance (i.e., ∆r = ∆s), 
Simon’s modified procedure can be used to obtain 
the required sample sizes (Stages 1 and 2) and the 

rejection boundaries for each measure of interest. It 
is important to remember that typical output char-
acterizing Simon’s method cannot be used to char-
acterize a co-primary design. For example, the PET 
for Simon’s design is listed as 71.7% when πr = 0.05, 
α = 0.05, β = 0.10, and ∆r = 0.15. Yet, under inde-
pendence, the PET is reduced to 0.7172 = 0.514 (see 
the first row of Table 4). Instead, programs utilizing 
the joint distribution are needed to calculate the 
operating characteristics.

For cases where the null probabilities are not the 
same or the interval for clinical significance is dif-
ferent (i.e., ∆r º ∆s), then a two-step procedure using 
univariate methods can be used. For example, 
Simon’s procedure was used to examine the sample 
size requirements on both scales, and the scale 
requiring the larger total sample size was used to 
determine the study’s interim and final sample size 
as well as the rejection boundaries for this more 
demanding parameter. However, it was not appro-
priate to use the same rejection boundaries for both 
measures of efficacy. In this case, another procedure 
by Schultz was used to find the rejection boundaries 
for the other scale (e.g., response) conditioned on 
the interim and final sample sizes [20]. Again, a 
value of 1/2 the intended α was provided to the 
algorithm without modification to β. This proce-
dure is referred to as the modified Simon–Schultz 
method.

Simon’s optimal procedure determined the sam-
ple size for the two rows per parameter setting in the 
tables. The procedures using the methods in this 
article at Simon’s sample sizes are labeled as ‘flexible 
co-primary-binomial method’ (Flx-CoE). Five fea-
tures were inspected under the assumption of inde-
pendent clinical outcomes: PET, the expected sample 
size under the null hypothesis (E[Nt | H0]), the real-
ized size of the test, and the realized statistical power 
under two alternative hypotheses (Hr and Hs).

Finally, a so-called optimal procedure was exam-
ined (labeled ‘optimal co-primary-binomial’ (Opt-
CoE)), which utilized the procedures of this article 
to find the smallest E[Nt | H0] subject to the desired 
statistical size and power. These designs were 
characterized by the same five features as described  
earlier.

Results

For the designs where ∆r = ∆s = 0.15, α = 0.10 and  
β = 0.10, Simon’s adjusted procedure was quite com-
petitive with the Flx-CoE procedure when πr0 = πs0. 
Often both procedures yielded identical rejection 
boundaries. For the case where πr0 = πs0 = 10%, the 
size of Simon’s procedure was slightly greater than 
10%, so its power was slightly greater than the Flx-
CoE procedure especially under Hs. All the procedures 

Figure 3.  A contour plot of the power function on πs and πr for 
the realized sample size assuming independence.
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controlled the probability of a type I error fairly 
closely. Simon’s procedure slightly exceeded the tar-
geted power of 90% in many cases, which may be 
considered an attractive feature since power drops 
slightly when response is positively correlated with 
the PFS outcome. The modified Simon–Schultz 
method performed poorly on several points. It had 
a low PET and power higher than the desired level 
(90%). This made the expected sample size under 
the null hypothesis considerably larger than the co-
primary procedures.

When examining the expected sample size under 
the null hypothesis, the Opt-CoE procedure seemed 
to perform the best. The only exception was when 
πr0 = 80% and πs0 = 80%, but the expected sample 
sizes were quite close in this case.

For the designs where ∆r = ∆s = 0.20, α = 0.05, and 
β = 0.20, Table 5 shows that Simon’s procedure 

often equaled or outperformed the Flx-CoE method 
by the expected sample sizes. Some of these com-
parisons may be considered ‘unfair’ since the actual 
size of Simon’s procedure occasionally was greater 
than 5%. Although Simon often beats the Flx-CoE 
method by PET and E[Nt | H0], the Flx-CoE method 
often had superior statistical size and power. For the 
case where πr0 = πs0 = 70%, the two procedures had 
identical operating characteristics. The Simon–
Schultz method suffered from the same deficiencies 
as described earlier, leading to designs with poor 
operating characteristics.

The Opt-CoE procedure was superior to the other 
procedures (by expected sample sizes and having 
design parameters closer to the desired levels) in all 
the settings examined except for the case where  
πr0 = πs0 = 0.70; in this case, all the designs had 
identical operating characteristics.

Table 4.  Operating characteristics for three methods: Simon’s adjusted design (or a modified Simon–Schultz procedure), a flexible co-
primary-binomial method evaluated at Simon’s sample sizes (Flx-CoE), and an optimal co-primary-binomial method (Opt-CoE)

Method πr0 (%) πs0 (%) n1 n PET (%) E[Nt | H0] Size (%) Power Hr (%) Power Hs (%)

Simona   5   5 21 41 51 30.7 9.3 91.4 91.4
Flx-CoE 51 30.7 9.3 91.4 91.4
Opt-CoE 21 40 51 30.2 8.6 90.6 90.6
Simona 10 10 21 66 42 47.1 10.4 92.5 92.5
Flx-CoE 42 47.1 7.9 92.4 89.8
Opt-CoE 27 57 52 41.5 9.5 90.7 90.7
Simona 20 20 37 83 47 61.4 9.9 91.5 91.5
Flx-CoE 47 61.4 9.9 91.5 91.5
Opt-CoE 37 78 47 58.7 9.2 90.0 90.0
Simona 30 30 39 100 38 76.7 9.6 91.9 91.9
Flx-CoE 38 76.7 9.6 91.9 91.9
Opt-CoE 49 91 52 69.4 9.4 90.0 90.0
Simona 70 70 25 79 43 55.5 10.3 92.5 92.5
Flx-CoE 43 55.5 8.3 92.3 89.9
Opt-CoE 34 68 54 49.8 9.8 90.6 90.6
Simona 80 80 19 42 58 28.6 9.7 91.6 91.6
Flx-CoE 42 32.4 7.2 85.2 92.2
Opt-CoE 18 43 53 29.7 8.8 91.7 91.7
Simonb,c   5 10 21 66 22 56.1 10.0 98.2 94.3
Flx-CoE 26 54.2 9.9 96.8 95.3
Opt-CoE 28 46 58 35.5 9.9 90.8 90.1
Simonb 10 15 30 82 13 75.2 8.7 96.9 95.0
Flx-CoE 46 58.1 9.5 93.0 93.6
Opt-CoE 37 61 58 47.2 9.3 90.6 90.3
Simonb 10 25 37 99   7 94.6 9.5 98.8 94.9
Flx-CoE 48 69.4 9.3 96.3 93.1
Opt-CoE 38 74 54 54.5 9.5 90.2 90.4

PET: probability of early termination.
Note that ∆r = ∆s = 0.15,α = β = 0.10.
aProcedure utilized the modified Simon procedure as defined earlier.
bProcedure utilized the modified Simon–Schultz method.
cThe Simon–Schultz method recommended always proceeding to the second stage. In this case, we required at least one response before proceeding to 
the second stage.
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Discussion
General points

The proposed method discussed here has been utilized 
in a number of Phase II trials by the Gynecologic 
Oncology Group (GOG). During the development of 
GOG 0229E, there were discussions about the cyto-
toxic attributes of bevacizumab and suggestions of 
replacing 6-month PFS with response. This seemed 
appropriate since a sufficient number of responses 
were seen in a Phase II ovarian cancer study to justify 
further study [21]. However, some investigators were 
hesitant about its degree of cytotoxic activity (with a 
21% observed response rate) and the sensitivity of the 
trial to detect activity through other mechanisms (e.g., 
40% of the patients had 6-month PFS). A nice solution 
to these problems is to incorporate both outcomes 
into the design as a co-primary end point study. The 
probability of a type I error can be controlled without 

causing undue costs to statistical power or sample size 
requirements. The gain was the assurance of trial sen-
sitivity to two mechanisms of drug activity.

An important characteristic of the proposed 
design (as well as the one proposed by Yu) is its 
robustness against the degree of association between 
the co-primary end points and, moreover, the con-
servative quality of the assumption of independence 
of the two end points, as indicated at the end of the 
section titled ‘Searching for flexible designs that 
obtain the planned α, βr, and βs’ [13]. This feature is 
important because the level of association likely 
changes in significant ways from one study to the 
next. Therefore, designing a study (with a method 
that is not robust) based on a particular level of asso-
ciation is unlikely to yield reliable conclusions.

Unfortunately, there is a degree of dependence 
with regard to the PET. In the illustrations provided 
here, the PET varied from about 43%–54%. These 

Table 5.  Operating characteristics for three methods: Simon’s adjusted design (or a modified Simon–Schultz procedure), a flexible co-
primary-binomial method evaluated at Simon’s sample sizes (Flx-CoE), and an optimal co-primary-binomial method (Opt-CoE)

Method πr0 (%) πs0 (%) n1 n PET (%) E[Nt | H0] Size (%) Power Hr (%) Power Hs (%)

Simona   5   5   8 23 44 16.4 4.6 83.1 83.1
Flx-CoE 44 16.4 4.6 83.1 83.1
Opt-CoE   7 23 48 15.2 4.4 81.1 81.1
Simona 10 10 10 38 54 22.8 5.0 84.0 84.0
Flx-CoE 26 30.8 3.9 84.3 88.2
Opt-CoE 11 30 49 20.8 4.6 80.6 80.6
Simona 20 20 13 55 56 31.4 5.5 83.7 83.7
Flx-CoE 37 39.3 4.7 87.0 86.9
Opt-CoE 17 45 57 28.9 4.2 81.0 81.0
Simona 30 30 17 65 60 36.2 4.7 83.2 83.2
Flx-CoE 46 42.8 4.1 86.2 85.5
Opt-CoE 18 50 52 33.3 4.3 80.0 80.0
Simona 50 50 18 57 58 34.5 5.0 82.9 82.9
Flx-CoE 45 39.4 4.2 82.3 84.3
Opt-CoE 20 51 56 33.6 4.2 80.2 80.2
Simona 70 70 12 35 55 22.2 4.6 82.9 82.9
Flx-CoE 55 22.2 4.6 82.9 82.9
Opt-CoE 12 35 55 22.2 4.6 82.9 82.9
Simonb,c 10 15 12 45 21 38.1 3.9 90.4 88.0
Flx-CoE 48 29.0 3.5 86.7 83.9
Opt-CoE 17 35 58 24.6 4.4 84.7 80.8
Simonb 40 50 16 61   8 57.6 5.1 89.9 88.2
Flx-CoE 43 41.7 4.5 84.8 85.2
Opt-CoE 20 54 57 34.8 4.2 81.2 80.1
Simonb 50 65 18 57 21 48.9 4.5 87.3 92.5
Flx-CoE 49 37.9 4.1 83.8 90.7
Opt-CoE 19 47 57 30.9 4.7 83.0 80.0

PET: probability of early termination.
Note that ∆r = ∆s = 0.20, α = 0.05, β = 0.20.
aProcedure utilized the modified Simon procedure as defined earlier.
bProcedure utilized the modified Simon–Schultz method.
cThe Simon–Schultz method recommended always proceeding to the second stage. In this case, we required at least one response before proceeding to 
the second stage.
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values are also less than typically seen with Simon’s 
univariate designs. This leads to more trials that 
complete the second stage with truly inactive 
agents. In this regard, the trials are a bit less efficient 
than single end point trials even if the overall risk of 
recommending an inactive drug remains the same.

Differences with other works

Lin et al. [14] developed a procedure that utilizes the 
primary end point at the interim analysis and then 
uses both end points at the end of the trial. This is an 
important distinction. Our procedures use both end 
points at both stages of the trial since we were 
equally interested in either efficacy measure. The 
methods of Lu et al. [10] can potentially be applied 
to the problem discussed here if all (or at least most) 
the patients who respond have a 6-month PFS. The 
applicability depends on the duration of response in 
most people. The data within the GOG indicated 
that patients with short-term responses were not 
exceedingly rare, so this category of patients was 
preferably modeled. Lin and Chen [11] transformed 
bivariate information (complete responses and par-
tial responses) into a univariate scale, utilizing a 
weighted linear combination with greater weight 
given to complete responses. Since these characteris-
tics are mutually exclusive, and because we were 
equally interested in activity on either scale, we did 
not examine this approach in great detail. We believe 
that there is no reason why the methods of Bryant 
and Day [6] or Thall and Cheng [7] could not be 
applied to problems of efficacy by substituting non-
toxic reactions with beneficial response. However, 
their decision criteria would require activity on both 
end points (or at least noninferiority on one dimen-
sion) before declaring the drug active. There are cases 
where such decision criteria are required (e.g., by the 
Food and Drug Administration (FDA) in drugs being 
marketed for activity against migraines), but this was 
not required for our purposes. For similar reasons, the 
methods of Yu et al. [13] and Conaway and Petroni 
[8] were not interesting to us. The methods proposed 
by Thall et al. appear more suitable for investigations 
that can monitor patients sequentially [15]. Stallard  
et al. [16] provide a Bayesian alternative that can 
include additional criteria for conducting a Phase III 
study such as its cost and potential benefit to future 
patients. Many of the methods provided here follow 
an unpublished technical report by Sill and Yothers [22].

Comparison of methods

First, the PET was exceptionally low for the Simon–
Schultz procedure, making the utilization of an 
interim analysis almost unworthy of incorporation 

into the design (7% for the case where πr0 = 0.10 and 
πs0 = 0.25 in Table 4). This low PET resulted mostly 
from Schultz’s procedure. Because the univariate pro-
cedures (especially Simon) expect a higher percentage 
of the trials to be erroneously stopped early under the 
alternative hypothesis, they are designed to have 
more ‘generous’ thresholds in the second stage. When 
this normally univariate procedure is tied into a co-
primary procedure, the higher than expected proba-
bility of proceeding to a second stage results in higher 
than expected power. These designs are therefore sys-
tematically overpowered. This procedure is not rec-
ommended for the design of co-primary studies.

Simon’s procedure provides a formidable com-
petitor to the flexible procedure (Flx-CoE) in the 
case where πr0 = πs0 and ∆r = ∆s. However, this 
method requires fairly strong assumptions that may 
not apply to many clinical questions. In addition, if 
the targeted sample size is not met in either stage, 
the method does not offer any remedial recommen-
dations. Finally, if a sponsor can attain a sample size 
to such a rigorous requirement, then they will gen-
erally do better by applying an Opt-CoE procedure.

Future work

The flexibility of the design has been questioned by 
several statisticians in the field as a clever procedure to 
enable investigators to test the null hypothesis multi-
ple times in an attempt to obtain significant results. 
Although abuse of the method in this way is possible 
as it is with Chen and Ng’s method [4], the procedure 
should only be used by organizations that have rela-
tively imprecise control over study accrual, and the 
decision rules should only be applied once at each 
stage. For organizations that have precise control over 
study accrual, a rigid design should be used. They 
should use a method such as that provided by the 
‘optimum’ procedure described in section 
‘Comparisons with other procedures’, which will be 
posted on our website. Also, we are looking into devel-
oping a truly exhaustive algorithm that finds the opti-
mal or minimax designs for co-primary rigid designs.
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