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Class Overview

• Day 1:  Discussion of statistical analysis of 
microarray data – Lisa M. McShane

• Day 2: Hands-on BRB ArrayTools
workshop – Supriya Menezes
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Outline

1) Introduction: Technology
2) Data Quality & Image Processing
3) Normalization & Filtering
4) Study Objectives
5) Analysis Strategies Based on Study Objectives
6) Design Considerations
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1) Introduction: Technology
2) Data Quality & Image Processing
3) Normalization & Filtering
4) Study Objectives & Design Considerations
5) Analysis Strategies Based on Study 

Objectives
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Gene Expression Microarrays

• Permit simultaneous evaluation of 
expression levels of thousands of genes

• Main platforms
– Spotted cDNA arrays (2-color)
– Affymetrix GeneChip (1-color)
– Spotted oligo arrays (2-color or 1-color)
– Nylon filter arrays
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Spotted cDNA Arrays
(and other 2-color spotted arrays)

• cDNA arrays: Schena et al., Science, 1995 
• Each gene represented usually by one spot 

(occasionally multiple)
• Two-color (two-channel) system

– Two colors represent the two samples 
competitively hybridized

– Each spot has “red” and “green” measurements 
associated with it
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cDNA Array
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cDNA Microarray Image
(overlaid “red” and “green” images)
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Affymetrix GeneChip Arrays
• Lockhart et al., Nature Biotechnology, 1996
• Affymetrix:  http://www.affymetrix.com
• Glass wafer (“chip”) – photolithography, 

oligonucleotides synthesized on chip
• Single sample hybridized to each array
• Each gene represented by a “probe set”

– One probe type per array “cell”
– Typical oligo probe is 25 nucleotides in length
– 11-20 PM:MM pairs per probe set

(PM = perfect match, MM = mismatch)
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[Affymetrix] Hybridization
Oligo “GeneChip” Array
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Image of a Scanned
Affymetrix GeneChip
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Perfect Match - Mismatch Probe Pairs

(Figure 2 from Schadt et al., Journal of Cellular Biochemistry, 2001)
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Outline

1) Introduction: Technology
2) Data Quality & Image Processing
3) Normalization & Filtering
4) Study Objectives & Design Considerations
5) Analysis Strategies Based on Study 

Objectives
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cDNA/Spotted Arrays

Scratch
or fiber?

Bubble

Background
haze

Slide quality Spot quality

Holes

Saturation

Dust spec

Edge effect



16

Affymetrix Arrays:  Quality Problems
(Figure 1 from Schadt et al., Journal of Cellular Biochemistry, 2001)
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cDNA/2-color spotted arrays: 
Segmentation

• Segmentation - separation of feature (F) 
from background (B) for each spot.

(See software documentation)
• Summary measures computed for F

– Intensity: mean or median over pixels
– Additional measures: SD, # pixels (size), etc.
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cDNA/2-color spotted arrays: 
Background Correction &

Signal Calculation

• No background correction
Signal = F intensity

• Local background correction
Signal = F intensity - Blocal

• Regional background correction
Signal = F intensity - Bregional
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cDNA/2-color spotted arrays:  
Flagging Spots/arrays Exclusion

• F
• F-B
• (F-B)/SD(B)
• Spot Size

• Too many spots flagged

• Narrow range of intensities

• Uniformly low signals

Exclude spots if “signal”
or “signal-to-noise”
measure(s) poor:

Exclude whole arrays or 
regions of arrays:
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cDNA/2-color spotted arrays:  
Gene-level Summaries

• Model-based methods 
– Work directly on signals from two channels 

(two colors)
• Ratio methods

– Red signal/Green signal
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Affymetrix Arrays: Image Processing
• DAT image files → CEL files
• Each probe cell: 10x10 pixels
• Grid alignment to probe cells
• Signals:

– Remove outer 36 pixels → 8x8 pixels
– The probe cell signal, PM or MM, is the 75th percentile of the 8x8 pixel values

• Background correction: Average of the lowest 2% probe cell values in zone is 
taken as the background value and subtracted

• Summarize over probe pairs to get gene expression indices
– Detection calls - present/absent

See Affymetrix documentation:
• Affymetrix website (http://www.affymetrix.com)
• Affymetrix Microarray Suite User Guide
• Affymetrix Statistical Algorithms Description Document

http://www.affymetrix.com/
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Affymetrix Arrays:  
Probe Set (Gene) Summaries

• AvDiffi = Σ(PMij-MMij)/ni for each probe set i
(original Affymetrix algorithm)

• New Affymetrix algorithm to address negative 
signals (MAS 5.0, 5.1 & GCOS 1.0)
– anti-log of  a robust average (Tukey biweight) of the

log(PMij-IMij), where
IM=MM, if MM < PM

= adjusted to be less than PM, if MM≥PM
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Affymetrix Arrays:  
Model-based Probe Set (Gene) Summaries

• Li and Wong (PNAS, 2000; Genome 
Biology, 2001; incorporated into dChip)
– MBEIi = θi estimated from PMij-MMij = θi φj+εij

=> weighted average difference
– MBEIi

* = θi
* estimated from PMij = νi + θi

* φj´ : 
probe set summaries are based on PM signals 
only.
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Affymetrix Arrays:  
Model-based Probe Set (Gene) Summaries

(continued)

• Irizarry et al. (Nucleic Acids Research, 
2003; Biostatistics, 2003)
– RMAi = ei estimated from T(PMij) = ei + aj+εij, 

where T(PM) represents the PM intensities 
which have been cross-hybridization corrected, 
normalized and log-transformed

• Wu, Irizarry, Gentleman, Murillo, Spencer 
(J. Amer. Stat. Assoc., 2004)
– Apply cross-hybridization correction that 

depends on G-C content of probe.
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Affymetrix Arrays: Comparison of 
cross-hybridization corrections

• MAS 5.0/GCOS:  Estimate cross-
hybridization using MM probes for the 
gene.

• RMA: Some target hybridizes to the MM 
probe; for high expressed genes MM is 
brighter than true cross-hybridization; use 
smaller CH estimate (approx. mode of the 
MM probes across all MM probe sets).
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Outline

1) Introduction: Technology
2) Data Quality & Image Processing
3) Normalization & Filtering
4) Study Objectives & Design Considerations
5) Analysis Strategies Based on Study 

Objectives
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cDNA/2-color spotted arrays:
Need for Normalization

• Unequal incorporation of labels 
– green brighter than red

• Unequal amounts of sample 

• Unequal PMT voltage
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Normalization Methods for 
cDNA/2-Color Spotted Arrays

• Model-based methods
– Normalization incorporated into model

• Ratio-based methods
– Median (or Mean) Centering Method
– Lowess Method
– Multitude of other methods

Chen et al., Journal of Biomedical Optics, 1997
Yang et al., Nucleic Acids Research, 2002

– Scaling factors, separately by printer pin, etc.
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Median (or Mean) Centering

Subtract median or mean log-ratio (computed over all genes
on the slide or only over housekeeping genes) from each 
log-ratio. 

In plot of log(red signal)
versus log(green signal), if 
point scatter is parallel to 
45° line, adjust intercept to 0.

MCF7 vs MCF10A, Expt. 3
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Lowess Normalization: M vs A plots
Yang et al., Nucleic Acids Research, 2002

M vs A with Lowess Smooth, Expt. 22
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MCF7 vs MCF10A, Expt. 22
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log2(REF signal)
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Normalization: Affymetrix Arrays

• Variations due to sample, chip, hybridization, 
scanning

• Probe set-level vs probe-level
• Quantile normalization, intensity-dependent, etc.
• Normalize across all arrays or pairwise
• PM-MM vs PM only
• References:

– Li and Wong (PNAS, 2000; Genome Biology, 2001)
– Irizarry et al. (Nucleic Acids Research, 2003; 

Biostatistics, 2003)
– Bolstad et al. (Bioinformatics, 2003)
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Filtering Genes
• “Bad” or missing values on too many arrays

• Not differentially expressed across arrays (non-informative)

– Variance (assumes approx. normality)

s2
i = sample variance of gene i (log) measurements across n arrays.

Exclude gene i if (gene has smaller var than median)

(n-1) s2
i < χ2(α, n-1)×median(s2

1, s2
2, . . ., s2

K), K= number of genes.

– Fold difference

Max/Min < 3 or 4, (95th percentile/5th percentile) < 2 or 3

Filter if k% of genes have FC< 2 or 3 relative to median
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Outline

1) Introduction: Technology
2) Data Quality & Image Processing
3) Normalization & Filtering
4) Study Objectives
5) Analysis Strategies Based on Study Objectives
6)  Design Considerations
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Design and Analysis Methods Should 
Be Tailored to Study Objectives

• Class Comparison (supervised)
– For predetermined classes, establish whether 

gene expression profiles differ, and identify 
genes responsible for differences

• Class Discovery (unsupervised)
– Discover clusters among specimens or among 

genes
• Class Prediction (supervised)

– Prediction of phenotype using information from 
gene expression profile
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Class Comparison Examples

• Establish that expression profiles differ between 
two histologic types of cancer.

• Identify genes whose expression level is altered by 
exposure of cells to an experimental drug.
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Class Discovery Examples

• Discover previously unrecognized subtypes of 
lymphoma.

• Cluster temporal gene expression patterns to get 
insight into genetic regulation in response to a 
drug or toxin.
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Class Prediction Examples

• Predict from expression profiles which patients are 
likely to experience severe toxicity from a new 
drug versus who will tolerate it well.

• Predict which breast cancer patients will relapse 
within two years of diagnosis versus who will 
remain disease free.
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Outline

1) Introduction: Technology
2) Data Quality & Image Processing
3) Expression Measures, Normalization & Filtering
4) Study Objectives & Design Considerations
5) Analysis Strategies Based on Study Objectives
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Analysis Strategies for Class 
Comparisons

• Global tests
– Compare whole profiles
– Permutation tests

• Gene-level analyses
– Model-based methods
– Non-model-based methods
– Hybrid variance methods
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Global Tests for Differences in
Profiles Between Classes

• Choice of summary measure of difference
Examples:

- Sum of squared univariate t-statistics
- Number of genes univariately significant at 0.001 level

• Statistical testing by permutation test
• BRB-ArrayTools uses the number of univariately significant genes as 

a summary measure for the global test for differences between profiles.
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Gene-Level Analyses
• Model-based methods

– Multi-parameter modeling of channel-level data (e.g., 
Gaussian mixed or ANOVA models), hierarchical 
Bayesian models, etc.

– May borrow information across genes
– May use multiple comparison adjustments

• Non-model-based methods
- Log ratios or signal (e.g., Affymetrix)
- T-test, F-test, or nonparametric counterparts (e.g., 

Wilcoxon)
- Multiple comparison adjustment commonly used

• Random variance methods
– Variance estimates borrow across genes
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Model-based Gene-by-Gene 
Methods for cDNA Arrays  

• Non-Bayesian Examples
– Kerr et al., Journal of Computational Biology, 2000
– Lee et al., PNAS, 2000
– Kerr and Churchill, Biostatistics, 2001
– Wolfinger et al., Journal of Computational Biology, 2001

• Bayesian & Empirical Bayes Examples
– Tadesse et al., Biometrics, 2003
– Ibrahim et al., JASA, 2002
– Efron et al., JASA, 2001; Stanford Tech Rep, 2001
– Newton et al., J Comp Biology 2001
– Manduchi et al., Bioinformatics 2000
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Random Variance Methods for
Small Sample Gene-Level 

Analyses 
• Bayesian: 

– Baldi and Long, Bioinformatics, 2001
• Frequentist: 

– Wright and Simon, Bioinformatics, 2003
• Available as the ‘Random variance’ option in BRB-

ArrayTools for Class Comparison and Class Prediction 
analyses:
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Multiple Testing Procedures for 
Gene-Level Analyses

• Actual Number of False Discoveries: FD
• Expected Number of False Discoveries: E(FD)

• Actual Proportion of False Discoveries: FDP
• Expected Proportion of False Discoveries: 

E(FDP) = False Discovery Rate (FDR)

Identification of differentially expressed genes while 
controlling for false discoveries (genes declared to be 
differentially expressed that in truth are not).
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Simple Procedures

• Control expected number of false discoveries
– E(FD) ≤ u
– Conduct each of k tests at level u/k

• Bonferroni control of familywise error (FWE) rate 
at level α
– Conduct each of k tests at level α/k
– At least (1-α)100% confident that FD = 0 
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Problems With Simple 
Procedures

• Bonferroni control of FWE is very conservative

• Controlling expected number or proportion of 
false discoveries may not provide adequate control 
on actual number or proportion
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Additional Procedures
• Review by Dudoit et al. (Statistical Science, 2003)
• “SAM” - Significance Analysis of Microarrays

– Tusher et al., PNAS, 2001 and relatives
– Estimate quantities similar to FDR (old SAM) or 

control FDP (newer versions of SAM)

• Bayesian
– Efron et al., JASA, 2001; Stanford Tech Rep, 2001
– Manduchi et al., Bioinformatics 2000
– Newton et al., J Comp Biology 2001

• Step-down permutation procedures
– Westfall and Young, 1993 Wiley (FWE)
– Korn et al., JSPI, 2004 (FD and FDP control)
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Examples of Types of Control
• Korn et al. FD procedure:  “We are 95% confident that the 

(actual) number of false discoveries is no greater than 2.”
• Korn et al. FDP procedure: “We are 95% confident that 

the (actual) proportion of false discoveries does not exceed 
approximately 0.10.”

• Tusher et al. SAM:  “On average, the false discovery 
proportion will be controlled at approximately 10%.”

• Current SAM – more similar to Korn FDP procedure
• Bayesian methods: “High posterior probability of 

differential expression”
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Multiple Testing Procedure Available in BRB-ArrayTools
• The step-down permutation procedure for FD and FDP control (Korn, et al.) is 

available in BRB-ArrayTools for Class Comparison, Survival Analysis, and 
Quantitative Traits Analysis (finding genes significantly correlated with a 
quantitative variable).  The following screenshot from the analysis dialog 
shows the default options:

• The number of permutations may be specified on the ‘Options’ page:
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Class Discovery
• Cluster analysis algorithms

(Gordon, 1999, Chapman Hall)
– Hierarchical
– K-means
– Self-Organizing Maps
– Maximum likelihood/mixture models
– Multitude of others

• Graphical displays
– Hierarchical clustering

• Dendrogram
• “Ordered” color image plot (heatmap)

– Multidimensional scaling plot
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Hierarchical Agglomerative
Clustering Algorithm

• Cluster genes with respect to expression across 
specimens

• Cluster specimens with respect to gene expression 
profiles
– Filter genes that show little variation across specimens
– Median or mean center genes
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Hierarchical Agglomerative
Clustering Algorithm

• Merge two closest observations into a cluster.
– How is distance between individual observations 

measured?

• Continue merging closest clusters/observations.
– How is distance between clusters measured? 

• Average linkage
• Complete linkage
• Single linkage
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Common Distance Metrics for
Hierarchical Clustering

• Euclidean distance
– Measures absolute distance 

(square root of sum of 
squared differences) 

• 1-Correlation
– Large values reflect lack of 

linear association (pattern 
dissimilarity)



55

Linkage Methods
• Average Linkage

– Merge clusters whose average distance between all 
pairs of items (one item from each cluster) is minimized

– Particularly sensitive to distance metric

• Complete Linkage
– Merge clusters to minimize the maximum distance 

within any resulting cluster
– Tends to produce compact clusters

• Single Linkage 
– Merge clusters at minimum distance from one another
– Prone to “chaining” and sensitive to noise
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Does clustering method matter?
One set of specimens clustered by different methods
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Interpretation of
Cluster Analysis Results

• Cluster analyses always produce cluster structure
– Where to “cut” the dendrogram?
– Which clusters do we believe?

• Circular reasoning 
– Clustering using only genes found significantly 

different between two classes
– “Validating” clusters by testing for differences between 

subgroups observed to segregate in cluster analysis 
• Different clustering algorithms may find different 

structure using the same data
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Assessing Clustering Results
• Data perturbation methods

– McShane et al., Bioinformatics, 2002 –
Gaussian errors (global test + cluster-specific 
assessment)

– Kerr and Churchill, PNAS, 2001 – Bootstrap residual 
errors

• Estimating the number of clusters
– GAP statistic (Tibshirani et al., JRSS B, 2002) – DOES 

NOT WORK!
– Yueng et al. (Bioinformatics, 2001) – jackknife 

method, estimate # of genes clusters
– Dudoit et al. (Genome Biology, 2002) – prediction-

based resampling
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Assessing Cluster Reproducibility:
Data Perturbation Methods

• Most believable clusters are those that persist 
given small perturbations of the data.

– Perturbations represent an anticipated level of noise in 
gene expression measurements.

– Perturbed data sets are generated by adding random 
errors to each original data point.

• McShane et al., Bioinformatics, 2002 –
Gaussian errors

• Kerr and Churchill, PNAS, 2001 – Bootstrap residual errors
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• Perturb the log-gene measurements and re-cluster.

• For each original cluster:
– Compute the proportion of elements that occur together in the 

original cluster and remain together in the perturbed data 
clustering when cutting dendrogram at the same level k.

– Average the cluster-specific proportions over many perturbed 
data sets to get an R-index for each cluster.

– The R-index may be obtained in BRB-ArrayTools for the 
hierarchical clustering of samples by selecting the ‘Compute 
cluster reproducibility measures’ option. The R-index option is 
not implemented for the hierarchical clustering of genes.

Assessing Cluster Reproducibility:
Data Perturbation Methods
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k = 3

c1 c2 c3

Perturbed Data

p1 p2

}

p3

Original Data

x1 x2 x3 y1 y2 y3 z1 z2 z3 x1 x2 x3 y1 y2 y3 z3 z1 z2

R-index Example

• 3 out of 3 pairs in c1 remain together in perturbed clustering.

• 3 out of 3 in c2 remain together.

• 1 out of 3 in c3 remain together.

• R-index = (3 + 3 + 1)/(3 + 3 + 3) = 0.78
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Cluster Reproducibility: Melanoma
(Bittner et al., Nature, 2000)

Expression profiles of 31 melanomas were examined with a variety of class 
discovery methods. A group of 19 melanomas consistently clustered together.

For hierarchical clustering, the 
cluster of interest had an 
R-index = 1.0.

⇒ highly reproducible

Melanomas in the 19 element 
cluster tended to have:

• reduced invasiveness
• reduced motility
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Evaluating the Number of Clusters
• Global test of “no clustering” followed by comparison of 

R-index and D-index over many cuts in the original 
dendrogram to assess how many clusters are reproducible 
(McShane et al., Bioinformatics, 2002)
– A global test of “no clustering” is available as an option in BRB-

ArrayTools for the multidimensional scaling of samples.  For 
computational purposes, the global test of clustering is applied to 
the multidimensional scaling coordinates (the dimension-reduced 
data) rather than to the original data.

• Gap Statistic (Tibshirani et al., JRSS B, 2002) – estimate 
number of clusters (Does not work!)

• Comparisons of methods for estimating number of clusters 
in small dimension cases (Milligan and Cooper, 
Psychometrika, 1985) 
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Graphical Displays: Heat Map

Hierarchical Clustering of Lymphoma Data (Alizadeh et al., Nature, 2000)
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• High-dimensional (e.g. 5000-D) data points are 
represented in a lower-dimensional space (e.g. 3-D)
– Principal components or optimization methods 

– Depends only on pairwise distances (Euclidean, 1-
correlation, . . .)  between points

– “Relationships” need not be well-separated clusters

Graphical Displays: 
Multidimensional Scaling (MDS)
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MDS: Breast Tumor and FNA Samples

(Assersohn et al., Clinical Cancer Research, 2002)

Color = Patient
Large circle = Tumor
Small circle = FNA
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MDS Representation of Total and Amplified
RNA Samples from Same Cell Line

(Fang et al., unpublished)

• There appears to be a difference between total and 
amplified samples.

• Variability among amplified samples appears larger than 
variability among total samples.
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Class Prediction Methods
Comparison of linear discriminant analysis, NN classifiers, 
classification trees, bagging, and boosting: tumor classification 
based on gene expression data (Dudoit, et al., JASA, 2002)

Weighted voting method: distinguished between subtypes of 
human acute leukemia (Golub et al., Science, 1999)

Compound covariate prediction: distinguished between 
mutation positive and negative breast cancers (Hedenfalk et al., 
NEJM, 2001; Radmacher et al., J. Comp. Biology, 2002)

Support vector machines: classified ovarian tissue as normal or 
cancerous (Furey et al., Bioinformatics, 2000)

Neural Networks: distinguished among diagnostic subcategories 
of small, round, blue cell tumors in children (Khan et al., Nature 
Medicine, 2001)
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Pitfalls in Class Prediction for 
Microarray Data

(Radmacher et al., J Comp Biology, 2002; 
Simon et al., JNCI, 2003)

• Highly complex models prone to overfitting to 
data 

• Internal validation performed improperly
– Must include re-selection of features (genes)
– Cross-validated predictions are not independent (can’t 

treat cross-validated error rate as a binomial proportion)
• Lack of appropriate and sufficiently large 

independent (external) “validation” sets
– Free of hidden biases
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The Compound Covariate Predictor (CCP)
(Tukey, Controlled Clinical Trials, 1993)

• Select “differentially expressed” genes by two-
sample t-test with small α.

CCPi = t1 xi1 + t2 xi2 + . . . + td xid

tj is the two-sample t-statistic for gene j.
xij is the log expression measure for gene 

j in sample i.
Sum is over all d differentially expressed 

genes.

• Threshold of classification: midpoint of the CCP 
means for the two classes.
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1. Prediction rule is built using full data set.
2. Rule is applied to each specimen for class 

prediction. 

Non-Cross-Validated Prediction

Cross-Validated Prediction (Leave-One-Out Method)
1. Full data set is divided into training and 

test sets (test set contains 1 specimen).
2. Prediction rule is built using the training 

set.
3. Rule is applied to the specimen in the 

test set for class prediction. 
4. Process is repeated until each specimen 

has appeared once in the test set.



73

Prediction on Simulated Null Data
Generation of Gene Expression Profiles
• 20 specimens (Pi is the expression profile for specimen i)
• Log-ratio measurements on 6000 genes
• Pi ~ MVN(0, I6000)
• 10000 simulation repetitions
• Can we distinguish between the first 10 specimens (Class 1) 
and the last 10 (Class 2)? (class distinction is totally artificial 
since all 20 profiles were generated from the same distribution)

Prediction Method
• Compound covariate prediction
• Compound covariate built from the log-ratios of the 10 most 
differentially expressed genes.
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Resubstitution method

1. Build CCP from all data.
2. For i=1…20, apply CCP to sample i.
3. Compare predicted class to actual class.
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LOOCV without gene selection

1. Select top 10 genes for CCP.
2. For i=1,…20:

1. Leave out sample i.
2. Build CCP(i) on other 19 samples.
3. Apply CCP(i) to sample i.  

3. Compare predicted class to actual class.
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Full LOOCV

1. For i=1…20
1. Leave out sample i. 
2. Select top 10 genes and construct CCP(i)
3. Apply CCP(i) to sample i.

2. Compare predicted class to actual class.  
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Gene-Expression Profiles in 
Hereditary Breast Cancer

( Hedenfalk et al., NEJM, 2001)

• Breast tumors studied:
7 BRCA1+ tumors
8 BRCA2+ tumors
7 sporadic tumors

• Log-ratios measurements of 
3226 genes for each tumor 
after initial data filtering

cDNA Microarrays
Parallel Gene Expression Analysis

RESEARCH QUESTION
Can we distinguish BRCA1+ from BRCA1– cancers and BRCA2+ from 
BRCA2– cancers based solely on their gene expression profiles?
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Classification of hereditary breast cancers with
compound covariate predictor

Class
labels

Number of 
differentially 
expressed 
genes
(full data set,
α = 0.0001)

m = number of 
misclassifications 
using
leave-one-out 
cross-validation

Proportion of random 
permutations with m or 
fewer misclassifications

BRCA1+
vs
BRCA1−

9 1
(0 BRCA1+,
1 BRCA1−)

0.004

BRCA2+
vs
BRCA2−

11 4
(3 BRCA2+,
1 BRCA2−)

0.043
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Class Prediction in BRB-ArrayTools

• Class prediction using a variety of prediction 
methods may be performed using BRB-
ArrayTools.  The predictors are automatically 
cross-validated, and a significance test may be 
performed on the cross-validated mis-classification 
rate.  Independent test samples may also be 
classified using the predictors formed on the 
training set.  The screenshot on the next page shows 
the available methods and options.
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Outline

1) Introduction: Technology
2) Data Quality & Image Processing
3) Normalization & Filtering
4) Study Objectives
5) Analysis Strategies Based on Study Objectives
6) Design Considerations
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Design Considerations
• Sample selection, including reference sample
• Sources of variability/levels of replication 
• Pooling
• Sample size planning
• Controls
• For cDNA/2-color spotted arrays:

– Reverse fluor experiments
• Dobbin, Shih and Simon, Bioinformatics, 2003

– Allocation of samples to (cDNA) array experiments
• Kerr and Churchill, Biostatistics, 2001
• Dobbin and Simon, Bioinformatics, 2002
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Sample Selection
• Experimental Samples

– A random sample from the population under 
investigation?  

– Broad versus narrow inclusion criteria?

• Reference Sample (cDNA array experiments using 
reference design)
– In most cases, does not have to be biologically relevant.

• Expression of most genes, but not too high.
• Same for every array

– Other situations exist (e.g., matched normal & cancer)
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• Biological Heterogeneity in Population
• Specimen Collection/ Handling Effects

– Tumor: surgical bx, FNA
– Cell Line: culture condition, confluence 

level
• Biological Heterogeneity in Specimen
• RNA extraction
• RNA amplification
• Fluor labeling
• Hybridization
• Scanning

– PMT voltage
– laser power

Sources of Variability 
(cDNA Array Example)

(Geschwind, Nature Reviews Neuroscience, 2001)
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Levels of replication

• Technical replicates
– RNA sample divided into multiple aliquots and 

re-arrayed.
• Biological replicates

– Use a different human/animal for each array.
– In cell culture experiments, re-grow the cells 

under the same condition for each array 
(independent replication).



87

Summary: Replication levels

• Independent biological replicates are required for 
valid statistical inference.

• Maximizing biological replicates usually results in 
the best  power for class comparisons.

• Technical replicates can be informative, e.g., for 
QC issues.  

• But, systematic technical replication usually 
results in a less efficient experiment.
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Is Pooling Advantageous?
• If  RNA samples tiny, pooling is an alternative to 

amplification.
• If RNA samples big enough, then there is not usually an 

advantage unless arrays are very expensive and samples 
very cheap.

• NO FREE LUNCH:  Pooling samples for each array can 
reduce the number of arrays needed to achieve desired 
precision and power, but this will come at the COST of 
requiring that a larger number of biologically distinct 
samples be used.

• Single pool with many aliquots hybridized to arrays is 
NOT smart!  Inference requires independent replication.
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Effect size
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Power to detect specified expression difference between 2 group
(McShane et al., JMGBN, 2003) 

= (mean diff)/sqrt(varbiol+ vartech)
on log2 scale

Kendziorski et al., Biostatistics, 2003 

Shih et al., Bioinformatics, 2004
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Class Comparison:
Allocation of Specimens in
cDNA Array Experiments

• Reference Design (traditional)
• Balanced Block Design 
• Others

– All pairs design 
– Loop Design (Kerr and Churchill, Biostatistics, 2001)
– Variations on loop designs
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Reference Design

A1

R

A2 B1 B2

RR R

RED

GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

R = aliquot from reference pool
Bi = ith specimen from class B
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Reference Design

• If the reference sample is not biologically relevant 
to the test samples,  the class comparison is done 
between groups of arrays.

• If the comparison between the reference sample 
and test samples is biologically meaningful (e.g. 
reference sample is a mixture of normal samples, 
test samples are types of tumor samples),  the class 
comparison is done between green and red 
channels – some reverse fluor experiments are 
required to adjust for potential dye bias.  
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Balanced Block Design

A1

A2

B2 A3

B3

B4

A4B1

RED

GREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B
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Summary Recommendations for 
Sample Allocation Schemes

• For 2-group comparison, block design is most efficient but 
precludes clustering.

• For cluster analysis or comparison of many groups, loop 
(not discussed) design is particularly bad and reference 
design is preferable.

• Reference design permits easiest analysis, allows greatest 
flexibility in making comparisons within and between 
experiments (using same reference), and is most robust to 
technical difficulties.

• The BRB-ArrayTools software performs class comparison 
between “groups of arrays” (e.g. reference designs) or 
between “red and green channels” (e.g. block designs), but 
currently not for loop designs.
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Sample Size Planning
for 2-group comparisons with cDNA arrays using 

common reference design or with Affymetrix arrays

• No comprehensive method for planning sample 
size exists for gene expression profiling studies.

• In lieu of such a method…
– Plan sample size based on comparisons of two classes 

involving a single gene.
– Make adjustments for the number of genes that are 

examined.
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• Approx. total sample size required to compare 
two equal sized, independent groups:

n = 4σ2(zα/2 + zβ)2/δ2

where δ = mean difference between classes
σ = standard deviation
zα/2, zβ = standard normal percentiles

(δ and σ on log scale)
• More accurate iterative formulas recommended 

if n is approximately 60 or less

Sample Size Planning
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Sample Size Planning
Choosing α and β

Let K = # of genes on array
M= # of genes truly differentially expressed at

a fold difference of θ = 2δ

Expected number of false positives:
EFP ≤ (K-M)×α (α = significance level)

Expected number of false negatives for θ-fold genes:
EFNθ = M×β (1-β = power)

Popular choices for α and β:
α = 0.001 β = 0.05 or 0.10
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Sample Size Planning: 
Effect of α and β on FDR

• False Discovery Rate 
(FDR) is the expected 
proportion of false-
positive genes on the gene 
list.

FDR = 

π=proportion of differentially 
expressed genes

π α 1-ß FDR
.005 .01 .95 68%
.005 .01 .80 71%
.005 .001 .95 17%
.005 .001 .80 20%
.05 .001 .95 2%πβπα

πα
)1()1(

)1(
−+−

−
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Sample Size Planning
Choosing σ and δ

Value of σ will be determined by biology and 
experimental variation

Within a single class, what SD is expected for 
expression measure?

For log2 ratios, σ in range 0.25 – 1.0
(typically smallest for animal model
and cell line experiments)

Value of δ is the size of mean difference (log2
scale) you want to be able to detect

2-fold: δ = log2 (2) = 1
3-fold: δ = log2 (3) = 1.59
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Example Sample Size Calculation
K = 10,000 genes on array
M = 100 genes differentially expressed 2-fold
Specify α = 0.001, β = 0.05

(zα/2 = 3.291, zβ = 1.645)
σ = 0.75
δ =1 (2-fold)

NEED n = 55 (approximately 28 per group)

Expect ≤ 10 false positives
Expect to miss approximately 5/100 2-fold genes
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Sample Size Examples
(α = .001)

σ δ Fold-
difference

(2δ)

n per 
group

Power(%)

.25 1 2 6 95
.5 1 2 14 95
.25 1 2 5 82
.5 1 2 5 14
.25 1.20 2.29 5 95
.5 2.39 5.24 5 95
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Sample size for class prediction

• Raises unique issues
– The classes may mostly overlap, even in the high 

dimensional space.
– There may be NO GOOD CLASSIFIER.
– There will be an upper limit optimal performance that 

no classifier can exceed.
• Solution: Determine sample size big enough to get 

“close to optimal” performance
– Dobbin and Simon, Biostatistics, 2007.
– Online interactive program website:
– http://linus.nci.nih.gov/brb/samplesize/
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3 essential inputs for sample size for 
class prediction with two classes

• Number of genes on the array.
– Example: ~22,000 features on an Affymetrix U113A 

array, ~54,000 on Affy + 2 arrays.

• The prevalence in each class.
– Example: If 20% of patients respond to a drug– then the 

prevalence is 20% vs. 80%.

• The fold-change for informative genes:
– Example: A two-fold change in expression corresponds 

to ~1.4 standardized fold change.
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Further sample sizes references

• Technical replicates for comparing 2 samples
– Lee et al., PNAS, 2000
– Black and Doerge, Bioinformatics, 2002

• Sample sizes for pooled RNA designs
– Shih et al., Bioinformatics, 2004

• Sample sizes for balanced block designs, paired 
data, dye swaps, technical replicates, etc.
– Dobbin et al., Bioinformatics, 2003
– Dobbin and Simon, Biostatistics, 2005
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How best to allocate effort?

• Microarrays can serve as a good high-
throughput screening tool to identify 
potentially interesting genes.

• Verification of results via a different, more 
accurate, assay often preferable to running 
many arrays or technical replicates.

• Gene IDs associated with sequences can 
change over time, so periodic verification is 
advisable.
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Controls

• Internal controls:  Multiple clones (cDNA 
arrays) or probe sets (oligo arrays) for same 
gene spotted on array 

• External controls:  Spiked controls (e.g. 
yeast or E. coli)
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cDNA/2-Color Spotted Arrays:  
Reverse Fluor Experiments

Forward vs -Reverse logRatio
 MCF7 vs MCF10A

Avg. of 7 forward logRatios
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Does dye bias exist?
•Direct 
labeling?  Yes.
•Indirect 
labeling?  Yes
•Does 
normalization 
(e.g., loess) fix 
it?  No.

Indirect labeling
Log base 2 scale dye bias estimates

Dobbin and Simon (Biostatistics, 
2005) show dye bias persists even 
after normalization, and may 
depend on intensity.
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cDNA/2-color spotted arrays
under common reference design:

Should reverse fluor “replicates” be 
performed for every array?

Usually NO!

See Dobbin, Shih and Simon, Bioinformatics, 2003 for a 
comprehensive discussion of reverse fluor replication
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Reverse Fluors:
cDNA/2-color spotted arrays with 

common reference design
• When interested in interpreting individual ratios . . .

– If gene-specific dye bias depends on gene sequence and 
not sample characteristics, dye bias can be adjusted for by 
performing some reverse fluor experiments.

– If dye bias depends on both the gene and the sample, dye 
swaps won’t help (Dobbin, Shih and Simon, 2005)!

• In BRB-ArrayTools reverse fluor arrays must be 
specified during the data importation (collation) 
step.
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Reverse Fluors:
cDNA/2-color spotted arrays with 

common reference design

• When interested in class comparisons and 
using common reference design. . .
– When comparing classes of non-reference 

samples tagged with the same dye, the dye bias 
should cancel out.

– Reverse fluors are not required.  
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Reverse Fluors:  cDNA/2-color 
spotted array with balanced block 

design
• For each class, half the samples should be 

tagged with Cy3 and half with Cy5.
• When comparing different classes, dye bias 

will cancel out of the class comparisons.
• No reverse fluors are required.  
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Reverse Fluors:
cDNA/2-color spotted arrays with 

common reference design
• When interested in class discovery . . .

– Usefulness of reverse fluor experiments and 
replicates will depend on nature and magnitude 
of both dye bias and experimental variability 
relative to between subject variability.

– For some clustering methods (Euclidean 
distance), constant dye biases should “wash out”.

– Some reverse fluors and replicates may be useful 
as informal quality checks.  
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Reverse Fluors:
cDNA/2-color spotted arrays with 

common reference design

• When interested in class prediction . . .
– Considerations of replicates and reverse fluor

experiments are similar to those for the case of 
class comparisons.



118

Summary Remarks
• Data quality assessment and pre-processing are important.

• Different study objectives will require different statistical analysis 
approaches.

• Different analysis methods may produce different results.  
Thoughtful application of multiple analysis methods may be 
required.

• Chances for spurious findings are enormous, and validation of any 
findings on larger independent collections of specimens will be 
essential.

• Analysis tools can’t compensate for poorly designed experiments.

• Fancy analysis tools don’t necessarily outperform simple ones.

• Even the best analysis tools, if applied inappropriately, can 
produce incorrect or misleading results.
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• NCI: http://linus.nci.nih.gov/~brb
– Tech reports, talk slides, reference to book written by BRB members
– BRB-ArrayTools software
– .pdf of these talk slides: ftp://linus.nci.nih.gov/pub/techreport/CIT_course.pdf

• Berkeley: http://www.stat.berkeley.edu/users/terry/Group/index.html
• Harvard: http://www.dchip.org
• Hopkins: http://biosun01.biostat.jhsph.edu/~ririzarr/Raffy/
• Jackson Labs: http://www.jax.org/staff/churchill/labsite/
• Stanford:

– http://genome-www5.stanford.edu/MicroArray/SMD/restech.html
– http://www-stat.stanford.edu/~tibs/ (R. Tibshirani)

• Bioconductor: http://www.bioconductor.org/
– R-based, open source pre-processing and analysis tools

• Whitehead Institute (Cancer Genomics Group): 
http://www.broad.mit.edu/cancer/index.html

Helpful Websites

http://linus.nci.nih.gov/~brb
ftp://linus.nci.nih.gov/pub/techreport/CIT_course.pdf
http://www.stat.berkeley.edu/users/terry/Group/index.html
http://www.dchip.org/
http://biosun01.biostat.jhsph.edu/~ririzarr/Raffy/
http://www.jax.org/staff/churchill/labsite/
http://genome-www5.stanford.edu/MicroArray/SMD/restech.html
http://www-stat.stanford.edu/~tibs/
http://www.bioconductor.org/
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