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A comparison of bootstrap methods and an adjusted bootstrap approach for 

estimating prediction error in microarray classification 

 

 
SUMMARY 

 
This paper first provides a critical review on some existing methods for estimating 

prediction error in classifying microarray data where the number of genes greatly exceeds 

the number of specimen. Special attention is given to the bootstrap-related methods. 

When the sample size n is small, we find that all the reviewed methods suffer from either 

substantial bias or variability. We introduce a repeated leave-one-out bootstrap method 

which predicts for each specimen in the sample using bootstrap learning sets of size ln. 

We then propose an adjusted bootstrap method that fits a learning curve to the repeated 

leave-one-out bootstrap estimates calculated with different bootstrap learning set sizes. 

The adjusted bootstrap method is robust across the situations we investigate and provides 

slightly conservative estimate for the prediction error. Even with small samples, it does 

not suffer from large upward bias as the leave-one-out bootstrap and the .632+ bootstrap, 

and it does not suffer from large variability as the leave-one-out cross-validation in 

microarray applications.  

 

KEY WORDS: bootstrap; prediction error; class prediction; microarray data; learning 

curve; feature selection              

 
1. INTRODUCTION 

 
DNA microarray technology is now commonly used in cancer research and has an 

increasing impact on cancer treatment, diagnosis and prognosis. One major application of 

this technology is tumor classification. A typical statistical problem in the area of tumor 

classification is to classify tumor tissues (or patients) into predetermined classes of 

malignancies based on their gene expression profiles. Prediction rules are developed 

using the observed gene expression data and used to predict the tumor classes for future 

observations. An accurate prediction rule helps to improve the rates of correct diagnosis 
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and proper treatment assignments for cancer patients. Performance of the class prediction 

procedures are usually assessed by prediction error rates.  

 

In this paper, we focus on methods for estimating prediction error in class prediction in 

microarray data analysis.  A microarray experiment is able to monitor expression patterns 

of thousands of genes simultaneously. But due to their cost and complexity, such 

experiments are often restricted on a small number of specimens. Microarray analysis 

presents a unique challenge in statistics which is characterized by a small sample size n  

and a large number p of features (variables), often with n p<< .  In the traditional  

scenario, cross-validation methods [1] are widely used to estimate the prediction error. 

Various bootstrap methods such as the ordinary bootstrap, the leave-one-out bootstrap 

and the .632+ bootstrap are proposed and compared by Efron [2] and Efron and 

Tibshirani [3, 4]. Breiman [5] proposes an out-of-bag estimation of prediction error rate, 

which is a byproduct from a bagging predictor [6].   

n p>

 

A microarray analysis typically starts with a feature (variable) selection procedure which 

determines the collection of genes to include in prediction modeling. When resampling 

methods are applied to microarray data, it is crucial to perform feature selection within 

each resampling step when estimating prediction errors—a process known as honest 

performance assessment [7].  Molinaro, Simon and Pfeiffer [8] compared several cross-

validation methods, split-sample methods and the .632+ bootstrap for high dimensional 

genomic studies. In this paper, we compare a number of existing bootstrap methods, the 

out-of-bag estimation and a bootstrap cross validation method (Fu, Carroll and Wang [9]) 

for estimating prediction errors when the number of features greatly exceeds the number 

of specimens. Such a study is needed to examine the performance of the bootstrap related 

methods in microarray applications; the necessity of repeated feature selection is often 

overlooked in previous work. 

 
 It is commonly acknowledged that there is a bias-variance tradeoff in estimating 

prediction errors. The reviewed methods in this paper suffer from either large upward or 

downward bias or very large variability in microarray situations. In the conventional 
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n p>  situation, the .632+ bootstrap is very popular for having low variability and only 

moderate bias. However, the study in this paper and the work of Molinaro et al. [8] 

suggest that the .632+ bootstrap can run into problems in the n p<  situation. We 

propose an adjusted bootstrap method, its performance is robust in various situations and 

it achieves a good compromise in the bias-variance tradeoff. 

 
2. A REVIEW OF METHODS FOR PREDICTION ERROR ESTIMATION 

                                            
In microarray class prediction problem, we observe ( , )i i ix t y= , 1,...,i n= , on  

independent subjects where  is a 

n

it p -dimensional vector containing the gene expression 

measurements and  is the response for subject .  The observations iy i 1,..., nx x can be 

viewed as realizations of an underlying random variable ( , )X T Y= . With dichotomous 

outcome, the response variable Y takes 0 or 1 values distinguishing the two classes. A 

prediction rule (model) r(·  is developed based on the information in the learning 

set

, )nlearx

learnx . The true prediction error ( { }( , )ne E I Y r T x= ≠⎡ ⎤⎣ ⎦ ) is the probability that the 

prediction model built on the observed data ( )1,..., nx x x=  misclassifies a future item 

following the same random mechanism as X .  

 

When the prediction rule is built for the observed data, the prediction accuracy should 

ideally be assessed on an independent large test set. But this often is impossible because 

of the relatively small sample sizes in microarray experiments. Methods for estimating 

prediction errors rely on partitioning or resampling the observed data to construct the 

learning and test sets. With a huge number of features, the prediction rules contain 

two key steps: the feature selection and the class prediction (discrimination) step.  Feature 

selection is administered prior to the class prediction step for every learning set. Failure 

to include feature selection in resampling steps results in serious downward bias in 

estimating prediction error and overly optimistic assessment of the prediction rule [10, 11, 

7]. Methods for class prediction include various versions of discriminant analysis, nearest 

neighbor classification, classification trees, etc. A comprehensive comparison of the class 

discrimination methods was conducted by Dudoit, Fridlyand and Speed [12].  In this 

( , )r ⋅ ⋅
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section, we concentrate on the bootstrap related methods for estimating prediction errors. 

For comparison purpose, we also include the resubstitution and the leave-one-out cross 

validation methods. 

 

The resubstitution estimate is known to underestimate the prediction error for using the 

same data set to build and evaluate the prediction rule. Moreover, an overfitting problem 

arises in the n<p situation, it is often possible to pick a number of features to build a 

model which fits the data perfectly but is not very useful in predicting future observations.  

 

The leave-one-out cross-validation estimate can be expressed as 

{ }( )1
1/ ( , )nLOOCV

n i i ii
e n I y r t x −=

= ≠∑ , where ( )ix −  represents the learning set with ix  

removed . It calculates the rate of misclassified responses when predicting for each 

specimen using a learning set containing all other observations in the sample. Correct 

application of the method to high dimensional microarray data requires feature selection 

for every leave-one-out learning set ( )ix −  of size 1n − .  The leave-one-out cross-validation 

produces almost unbiased estimate for the prediction error and has been a common 

choice for small sample problems. The investigation of Molinaro et al. [8] suggests that 

the leave-one-out cross-validation method performs no worse than other cross-validation 

methods and split sample methods in genomic studies with small to moderate sample 

sizes. However, when the sample size is small, the leave-one-out cross-validation method 

is often criticized for having very large variation. The large variability is ascribed mainly 

to the similarity between the leave-one-out training sets ( )ix − , 1,...i n= , and the sparseness 

of the data. The similarity between the sets ( )ix −  results in large covariance between the 

terms of , hence increases the overall variance of the estimate.  LOOCV
ne

 

Methods through bootstrap resampling 

These methods draw bootstrap samples of size  repeatedly from the original data n x by 

simple random sampling with replacement.  
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Ordinary Bootstrap method [4] has the problem that the learning and test sets overlap. In 

this, a prediction rule is built on a bootstrap sample and tested on the original sample, 

averaging the misclassification rates across all bootstrap replications gives the ordinary 

bootstrap estimate. This method seriously underestimates the prediction error since a 

subset of data is used both in building and in assessing the prediction model. 

 

Bootstrap Cross-Validation   The method is proposed by Fu, Carroll and Wang [9] to 

handle small sample problems. The procedure generates B bootstrap samples of size  

from the observed sample and then calculates a leave-one-out cross-validation estimate 

on each bootstrap sample. Averaging the

n

B cross-validation estimates gives the bootstrap 

cross-validation estimate for the prediction error. The paper of Fu et al. [9] did not 

carefully address the issue of feature selection. When the method is applied to high 

dimensional gene expression data, we emphasize that feature selection must be conducted 

in this method on every leave-one-out learning set derived from every bootstrap sample.  

Since an original observation can appear more than once in a bootstrap sample, a leave-

one-out learning set may overlap with the left out item when the cross-validation 

procedure is applied on a bootstrap sample. Consequently, the bootstrap cross-validation 

method tends to underestimate the true prediction error. 

 

Leave-One-Out Bootstrap   The leave-one-out bootstrap procedure (Efron [2]) generates 

a total of B bootstrap samples of size . Each observed specimen is predicted repeatedly 

using the bootstrap samples in which the particular observation does not appear. In this 

way, the method avoids testing a prediction model on the specimens used for constructing 

the model. The leave-one-out bootstrap estimate is given by 

n

{ }*,
1

1/ 1/ | | ( , )
i

nLOOBS b
n i i ii b C

e n C I y r t x
= ∈

= ∑ ∑ ≠ where is the collection of bootstrap 

samples not containing observation  and  is the number of such bootstrap samples. 

Feature selection and class prediction should be performed on each bootstrap sample

iC

i | |iC

*,bx , 

.  1,...,b B=
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The leave-one-out bootstrap is basically a smoothed version of the leave-one-out cross 

validation. To see this, the bootstrap samples in  can be viewed as random samples of 

size generated from the leave- -out data set

iC

n i ( )ix − . Bootstrap samples are more different 

between each other than the original leave-one-out sets. Moreover, for each specimen , 

the leave-one-out bootstrap method averages on the errors from the multiple predictions 

made on the bootstrap samples in . As a result, the leave-one-out bootstrap estimate has 

much smaller variability than the leave-one-out cross validation estimate. On the other 

hand, a bootstrap sample of size contains roughly .632n distinct observations from the 

original sample. It is often inadequate to represent the distribution of the original data 

when the sample size  is small.  Hence the leave-one-out bootstrap estimate tends to 

overestimate the true prediction error. 

i

iC

n

n

 

Out-of-Bag Estimation   The out-of-bag estimate [5] for the prediction error is a by-

product of bagging predictors (Bagging [6]). The out-of-bag estimate is the 

misclassification rate when predicting for each observation by the class that wins the 

majority votes from the multiple predictions, made on the bootstrap samples in which the 

particular observation is out-of-bag (i.e., not included). 

 

The out-of-bag estimation makes an interesting comparison to the leave-one-out 

bootstrap. The out-of-bag estimation employs a majority vote on the multiple predictions 

made for observation i based on the bootstrap samples in , while the leave-one-out 

bootstrap takes an average on errors of these predictions. The out-of-bag estimation can 

be viewed as a non-smooth variant and we envisage it to have larger variability than the 

leave-one-out bootstrap when the sample size is small.   

iC

 

.632+ Bootstrap   The .632+ bootstrap is proposed by Efron and Tibshirani [3] in order to 

reduce the upward bias of the leave-one-out bootstrap. The estimate has the form 

 where the weight is between 0 and 1 and  is the 

resubstitution estimate. Taking

.632 (1 )LOOBS RSB
n ne we w e+ = + − n w RSB

ne

0.632w =  gives the .632 bootstrap originally proposed 

by Efron [2].  When the resubstitution error is zero, the .632 bootstrap estimate 
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becomes , this results in systematic downward bias when there are no class 

differences (Breiman et al. [13], Efron and Tibshirani [3]).  The .632+ bootstrap aims to 

circumvent this problem by increasing the weight w  with respect to the growing level of 

overfitting. It often performs well in classification problems with .  For microarray 

data with , the overfitting problem always exists and the resubstituion error estimate 

is often close to zero. The .632+ bootstrap tends to put too much weight on the leave-one-

out bootstrap estimate in this situation.  

0.632 LOOBS
ne

n p>

n p<

 
3. AN ADJUSTED BOOTSTRAP APPROACH 

As discussed in the previous section, all reviewed methods for estimating prediction error 

encounter problems (large downward or upward bias, or large variability) for small 

samples. In this section, we initially construct a repeated leave-one-out bootstrap 

(RLOOB) which generates bootstrap learning sets of size . The resulting estimates 

exhibit a decreasing pattern towards the true prediction error as l increases. We then 

propose an adjusted bootstrap (ABS) method which fits a learning curve on these 

estimates in order to improve on the accuracy of the estimation. 

ln

 

The Repeated Leave-One-Out Bootstrap method is described as follows. For every 

original sample x , leave out one observation at a time and denote the resulting sets 

by ( 1) ( ),..., nx x− − . From each leave-one-out set ( )ix − , draw 1B  bootstrap learning sets of 

size . Build a prediction rule on every bootstrap learning set generated from ln ( )ix −  and 

apply the rule on the test observation ix . The repeated leave-one-out bootstrap estimate is 

the misclassification rate calculated across all the bootstrap runs and all n observations. It 

can be expressed as   

{ }
1

*,
( )

1 11

1 1( ) ( , )i

i

Bn
RLOOB b

n i i i
i b

e l I= ≠y r t x
n B −

= =
∑ ∑  

where is the th bootstrap learning set of size ln drawn from the set *,
( )

ib
ix − ib ( )ix − . Feature 

selection should be carried out on every bootstrap learning set  for  

and . 

*,
( )

ib
ix − 11,...,ib B=

1,...,i n=
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Let  be the chances that an observation appears in a bootstrap sample of size . A 

simple probabilistic argument indicates that

( )c l ln

( ) 1 lc l e−≈ − . A bootstrap sample of size 

contains approximately  distinct observations from the original sample. For 

example, for , the number of distinct observations is about , , 

 respectively.  With , the repeated leave-one-out bootstrap closely resembles 

the leave-one-out bootstrap procedure. As l  increases, a bootstrap learning set for a left-

out item contains more distinct observations. On one hand, the method acquires 

additional accuracy and brings a reduction on the upward bias. On the other hand, the 

bootstrap learning sets obtained from the same leave-one-out set become more similar in 

structure and this raises the variability of the estimation. 

ln ( )c l n⋅

1,2,3l = 0.632n 0.865n

0.95n 1l =

 

The learning behavior of the repeated leave-one-out bootstrap can be modeled as a 

function of the number of distinct observations included in the bootstrap learning sets. 

The trend of a learning process as a function of sample size is often modeled in the 

machine learning literature by a flexible curve following an inverse power law. Let be 

the expected number of distinct observations to appear in a bootstrap sample of size ln . 

Let be the expected error rate given the observed sample using the repeated leave-

one-out bootstrap method with bootstrap learning sets of size ln . Ideally, should 

follow the inverse power law  

m

( )e m

( )e m

( )e m am bα−= +  

where , a α  and  are the parameters.   b

 

The Adjusted Bootstrap method estimates the prediction error as follows. Pick 

bootstrap learning set sizes ,J jl n 1,...,j J= . Compute the repeated leave-one-out 

bootstrap estimate  with bootstrap learning sets of size  .Denote  

by where  is the expected number of distinct original observations in a 

bootstrap learning set of size . Fit an empirical learning curve of the 

( )RLOOB
n je l jl n ( )RLOOB

n je l

jme ( )j jm c l n= ⋅

jl n
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form  with j=1, …, J. The estimates , 
jm je am α−= + b a α  and for the parameters are 

obtained by minimizing the non-linear least squares function  

b

{ }2

1
.

j

J

m j
j

e am bα−

=

− −∑

The adjusted bootstrap estimate for the prediction error is given by 

 
ABS

ne an α− b= + . 

It is the fitted value on the learning curve as if all original observations contributed to an 

individual bootstrap learning set.  

  

In practice, the choice of can range from somewhere close to 1 to a value greater than 5.     l

Repeated leave-one-out bootstrap estimates typically have lower variability than leave-

one-out cross-validation. They have an upward bias that decreases and their variability 

increases with the expected number of distinct original observations selected in bootstrap. 

Fitting an inverse power law curve to a series of repeated leave-one-out bootstrap values 

enables us to define a conservative estimate (not subject to downward bias) that provides 

a compromise between estimates with large variability and large upward bias. Inverse 

power law curve is a flexible way to model a learning process, and is quite typical in 

describing machine learning, human and animal learning behavior (Shrager et. al. [14]). 

Mukherjee et al. [15] studied sample size requirements in microarray classification using 

a similar learning curve. 

 

4. COMPARISON OF METHODS 

In this section, we compare the methods described in Sections 2 and 3 through simulation 

study and an application to a lymphoma dataset.  

 

4.1 Simulated Data 

Similar simulated data sets are considered in Molinaro et al. [8]. For each simulated 

dataset, generate a sample of n patients, each with p genes (or features). Half of the 

patients are in class 0 and half in class 1 divided according to disease status. Gene 

expression levels are generated from a normal distribution with covariance 
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matrix ( ), , 1,...,ij i j pσΣ = = , where the only nonzero entries are 1iiσ =  and 

0.2ijσ = with 0 | . For class 0 patients, genes are generated with mean 0. For 

class 1 patients, 1% of the genes are generated with mean

| 5i j< − ≤

1µ , 1% with mean 2µ  and the 

rest with mean 0.  

    

In each simulation run, a prediction model is built on the sample of size  and tested on 

1000 independent data generated with the same structure. The resulting error rate 

estimates the true prediction error for the sample and is denoted by .  For each method, 

we report the averaged estimate (Est.) and the standard deviation (STD) calculated across 

R=1000 simulation replications, as well as the averaged bias (Bias) and mean squared 

error (MSE) with respect to the “true” prediction error . We have estimated the 

variability (STD) of a method of estimating prediction error using simulation, but such a 

variability estimate would not be available for analysis of a single dataset. 

n

ne

ne

 

For class discrimination, we consider in the simulation the diagonal linear discriminant 

analysis (DLDA), the one nearest neighbor with Euclidean distance (1NN) and the 

classification and regression tree (CART). These algorithms are available through built-in 

functions in the statistical package R [16]. Details of these R functions are described in 

Molinaro et al. [8]. For all methods reviewed in Section 2, we draw 100B =  bootstrap 

samples. Running 50 to 100 bootstrap replications is often considered more than adequate 

(Efron and Tibshirani [3, 4]). For the repeated leave-one-out bootstrap and the adjusted 

bootstrap, we run  bootstrap replications on every leave-one-out set and use them 

to predict for the left-out observation. This should be quite sufficient in comparison to the 

leave-one-out bootstrap method, in which B bootstrap replications provide about 

1 50B =

0.368B  

bootstrap samples not containing (and to predict for) a specific observation. The adjusted 

bootstrap method is fitted on repeated leave-one-out bootstrap estimates 

with l , so that the number of original observations contributing to the 

resampled learning set spreads out across a reasonable range for small sample problems.  

6J =

=0.75, 1,1.5,2, 3, 10
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In Table 1, we report the simulation results for two cases with n=20. In Case 1, we 

consider the no signal situation, where there are no differentially expressed genes 

between the two classes ( 1 2 0µ µ= =  in the simulation model). In Case 2, we consider a 

situation with moderate to strong signals ( 1 0.5µ = , 2 1.5µ =  in the simulation model). 

We reported the methods in groups with substantial downward bias, large variability and 

large upward bias, and in all Tables, cells with these unfavorable features are highlighted 

in boldface. Figure 1 clearly displays the comparative performance of the methods for the 

two contrasting cases with n=20 using DLDA. 

 

We first look at the outcome when the DLDA and/or 1NN classifiers are used in Table 1 

and Figure 1. Results using these two classifiers are very similar. The resubstitution 

estimates are close to zero in the study. The ordinary bootstrap underestimates the 

prediction errors and the problem is more serious when there are weak or no signals 

distinguishing the classes (Case 1). The behavior of the bootstrap cross-validation method 

is very similar to the ordinary bootstrap across all situations. With moderate to strong 

signals, the .632 bootstrap performs well in terms of bias, standard deviation and mean 

squared error. But the .632 bootstrap suffers from a systematic downward bias when 

there is no signal (Case 1). The leave-one-out cross-validation estimate is almost 

unbiased, but its standard deviation becomes very large as the signal diminishes. The 

bootstrap related methods reviewed in Section 2 generally have small variability. The 

only exception is the out-of-bag estimate. It often gives standard deviations as large as 

the leave-one-out cross-validation and is much more unstable than the leave-one-out 

bootstrap. With strong signals and small sample sizes, the leave-one-out bootstrap has 

very large upward bias; the .632+ bootstrap reduces the bias of the leave-one-out 

bootstrap to some extent but still seriously overestimates the truth. In  Case 2 with DLDA, 

for example, the bias-to-“true”-error ratios are more than 90% and 70% for leave-one-out 

bootstrap and the .632+ bootstrap with DLDA classifier. In situations with no signals, 

however, the leave-one-out bootstrap and the .632+ bootstrap both work very well. The 

adjusted bootstrap estimate evidently reduces the bias of the leave-one-out bootstrap 

estimate and variability of the leave-one-out cross-validation.  

Insert Table 1 and Figure 1 about here. 
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We also present in Table 1 the repeated leave-one-out bootstrap estimates with , 2 

and 10. With small l, the repeated leave-one-out bootstrap estimate gives small standard 

deviation but can have a large upward bias. Increasing l in the method tends to reduce the 

upward bias but raise the standard deviation. This along with Figure 2 illustrates the 

rationale for the adjusted bootstrap approach. In Figure 2, we plot the repeated leave-one-

out bootstrap estimates (using DLDA classifier) with  against the 

corresponding values of  for one of the simulated dataset with

1l =

l=0.75, 1,1.5,2, 3, 10

( )c l 1 0.5µ = , 2 1.5µ =  and 

n=20. The quantity  shows roughly the proportion of the distinct observations from 

the original sample to appear in a bootstrap learning set of size . Also presented in 

Figure 2 is an inverse power law learning curve fitted through the adjusted bootstrap 

approach. The “true” error rate and the leave-one-out cross-validation estimate are 

indicated by “t” and “c” on the plot. When implementing the adjusted bootstrap method, 

we use the R function “nlm”, a non-linear minimization algorithm, to estimate for the 

parameters. 

( )c l

ln

Insert Figure 2 about here. 

 

In Table 1, we notice that using CART in the methods gives larger prediction error rates 

than using the other two classifiers. The CART classifier constantly overfits the data in 

the presence of large amount of noise. Not surprisingly, the resampling methods using 

CART become less sensitive to the varying sizes of the learning sets. Thus, the leave-

one-out bootstrap has a smaller upward bias with CART than with the other two 

classifiers. The .632+ bootstrap performs well with CART when n=20. The repeated 

leave-one-out bootstrap estimates using CART change only mildly as the size of the 

bootstrap learning set ln  increases and this reduces the benefit of the adjusted bootstrap 

method. But it remains slightly conservative and still reduces the large variability of the 

leave-one-out cross-validation and performs reasonably well under varying signal levels.  

 

To see how the relative performance of the methods changes with sample sizes along 

with varying signal levels,  in Tables 2 and 3, we report the results for n=40 and n=100. 

In each Table, Case 1 is the no signal situation, and Case 2 is a situation with strong 
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signals ( 1.5µ =  i.e. 1 2µ µ=  in the simulation model). With these larger sample sizes 

(even with n=100), we find that when there are no real differences between the two 

classes, the out-of-bag estimation (OOB) and the leave-one-out cross-validation (LOOCV) 

still give larger variability compared to other methods; the resubstitution, the ordinary 

bootstrap, the bootstrap cross-validation and the .632 bootstrap still have substantial 

downward bias (Case 1, Tables 2 and 3). When there are strong differences between the 

classes, the LOOCV and OOB give smaller variability, and the resubstitution, the 

ordinary bootstrap, the bootstrap cross-validation and the .632 bootstrap give smaller 

downward bias (Case 2, Tables 2 and 3) as sample size n increases in comparison to Case 

2, Table 1. The .632+ bootstrap and the OOB perform better as sample size increases, but 

they sometimes suffer from downward bias when n=40 and 100 (Case 2, Tables 2 and 3) 

and this is illustrated in Figure 3 using the results for n=40 with CART classifier.  

 

The adjusted bootstrap is robust in the sense that it remains conservative (has no 

downward bias) under all circumstances considered in the simulation with varying signal 

levels, classifiers and sample sizes. It does not suffer from extremely large upward bias or 

variability in comparison to other methods for small to moderate sized samples (Tables 1 

and 2), and it performs no worse than the competitors such as the .632+ bootstrap, the 

OOB and the LOOCV for larger sample sizes (Table 3). 

Insert Tables 2-3 and Figure 3 about here. 

 

Additional simulations are conducted for varying signals and n/p ratios (Tables A1, A2 in 

supplement). We found the comparative conclusion does not depend on the n/p ratios 

(with n<<p). When DLDA or 1NN classifier is used, procedures for Tables 1-3 pick the 

10 genes having the largest absolute value t-statistics in the feature selection steps. 

Choosing 30 genes instead in the feature selection steps does not affect the overall 

comparison of the methods as shown in the supplement (Tables A3, A4).  The CART 

algorithm selects features intrinsically and the number of variables selected is not fixed in 

advance. These should have covered a reasonable range of class prediction 

algorithms/feature selection methods/number of variable selected. Tables A1-A4 are 
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reported in the supplementary material for this paper available at 

http://linus.nci.nih.gov/~brb/TechReport.htm. 

 

4.2 Lymphoma Data 

Rosenwald et al. [17] conducted a microarray study among patients with large-B-cell 

lymphoma and identified the germinal-center B-cell-like subgroup which had the highest 

five-year survival rate after chemotherapy. The study measured 7399 genes on 240 

patients. In the following analysis, we define the classes of outcome by the lymphoma 

subgroups, the germinal-center B-cell-like as class 1, the activated B-cell-like and type 3 

as class 0. This expression data provides only moderate signals to distinguish the classes 

(Wright et al. [18]). To assess the performance of the methods described in Sections 2 

and 3, we repeatedly draw a sample of size n from the 240 patients, find the estimates for 

prediction error and use the remaining patients as an independent test set to calculate the 

“true” prediction error. This procedure is repeated R=1000 times. The number of 

bootstrap replications is B=50 for the methods reviewed in Section 2 and for the 

repeated leave-one-out bootstrap.  

1 20B =

 

We present the results for n=14 and n=20 in Table 4 and only DLDA classifier is applied 

in this study. Feature selection is performed prior to each application of DLDA by 

choosing the 10 genes having the largest absolute-value t -statistics. With this moderate 

signal example, the methods behave in conformity with the trend we observe from the 

previous simulation study. The ordinary bootstrap and the bootstrap cross-validation are 

less competitive because they underestimate the true prediction error; the out-of-bag 

estimation is a less stable variant of the leave-one-out bootstrap while the .632 bootstrap 

performs well for both sample sizes. The leave-one-out cross-validation has the largest 

variability. The leave-one-out bootstrap and the .632+ bootstrap overestimate the truth by 

about 64% and 51% when n=14 and by 55% and 33% when n=20. With the adjusted 

bootstrap, the ratios of overestimation drop to 20% and 14% for n=14 and n=20.  

 

5. DISCUSSION 
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As CART is not a satisfactory classifier for high dimensional microarray data (Dudoit et 

al. [12]), we only included it in the simulation to evaluate how the classifiers interact with 

the procedures for prediction error estimation. In the discussion, we mainly focus on 

methods using the two simpler and better-behaved classifiers, DLDA and 1NN. 

 

 There is a bias-variance trade-off in the behavior of prediction error estimates and no 

method is universally better than others with both bias and variability considerations. 

For example, the leave-one-out cross-validation and the leave-one-out bootstrap 

procedures include  and roughly .632  distinct observations respectively in each 

learning set. As a consequence, the leave-one-out cross-validation is almost unbiased but 

can have large variability; the leave-one-out bootstrap can seriously overestimate the true 

prediction error but has small variability. The leave-one-out cross-validation provides 

satisfactory estimates in strong signal situations and the leave-one-out bootstrap in the no 

signal situations, but no method is the overall champion under all circumstances. 

1n − n

 

Overlaps between the resampled learning and test sets cause serious underestimation of 

the prediction error. Such overlaps occur, for instance, in the ordinary bootstrap 

procedure and the bootstrap cross-validation. Both estimates suffer from downward bias, 

which becomes quite substantial as the signal to discriminate the classes weakens. The 

simulation study on the bootstrap cross-validation method by Fu et al. [9] was limited to 

situations with very strong signals and it overlooked the necessity of feature selection in 

the resampling for high dimensional data. We examine the bootstrap cross-validation 

method in more extensive situations with proper feature selection. Overall, the bootstrap 

cross-validation estimate performs not much better than the ordinary bootstrap estimate.   

 

All the methods reviewed in Section 2 encounter difficulties when estimating prediction 

errors for high dimensional data with small samples. The leave-one-out cross-validation 

and the out-of-bag estimation suffer from large variability when the signal becomes weak. 

The leave-one-out bootstrap results in substantial upward bias as the signal level ranges 

from moderate to strong. Efron and Tibshirani [3] showed through simulation that 

the .632+ bootstrap works well for sample sizes as small as n=14 and 20 in the traditional 
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n>p situation. However, the .632+ bootstrap is not as satisfactory in the n<p situation 

when repeated feature selection is needed. The design of the .632+ bootstrap encounters 

difficulty since the resubstitution estimate is close to zero in the presence of overfitting 

when . With the DLDA and 1NN classifiers, the .632+ bootstrap works well in no 

signal situations but it has a large upward bias when the signal is moderate to strong and 

the sample size is small. The ordinary bootstrap and the bootstrap cross-validation yield 

significant downward bias in the moderate to no signal situations although the bias 

becomes smaller as the signal level increases. The .632 bootstrap behaves well in 

moderate to strong signal situations, but it leads to a systematic downward bias when 

there are no differences between the classes and the problem persists for any sample sizes.   

n p<

 

With the large amount of noisy information and limited sample sizes in microarray 

studies, it is often preferable to provide conservative estimates for the prediction error in 

order to avoid false positive reports on the prediction models. The ordinary bootstrap, the 

bootstrap cross-validation and the .632 bootstrap are thus considered less competitive 

because they provide anti-conservative estimates under some circumstances, even though 

they can work well in terms of the mean squared errors in strong signal situations. The 

out-of-bag estimation can occasionally underestimate the truth because of its high 

variability; even the .632+ bootstrap can be downwardly biased with the CART classifier. 

 

Although the size of microarray studies for classification purposes is increasing 

nowadays, there are still a considerable number of studies with small to moderate sized 

samples. For example, in the recent papers of Ghadimi et al. [19] and Cleater et al. [20], 

the sample sizes used in cancer class predictions were n=22 and n=40 respectively. The 

review of Dupuy and Simon [21] of 90 studies of expression profiling with cancer 

outcome data found that 65% of the publications had fewer than 50 patients. In this paper, 

we first reviewed and compared existing methods and found that their performances were 

not satisfactory in the context of microarray applications. This study reveals how various 

methods behave in microarray situations in terms of bias and variability, and the results 

help investigators and reviewers understand the limitation of classifiers and estimates of 

prediction error developed with small sample sizes. Second, we proposed the adjusted 
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bootstrap method and demonstrated that it is more robust than other methods across 

varying signal levels and classifiers in this context. For small to moderate sized samples, 

we suggest using the adjusted bootstrap method since 1) it remains conservative, hence 

avoids overly optimistic assessment of a prediction model; 2) it does not suffer from 

extremely large bias or variability in comparison to other methods. These features of the 

adjusted bootstrap method are particularly appealing for small samples when other 

prediction error estimation methods encounter difficulties. 
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Table 1. Simulation study with sample of size 20 and 800 genes. Two simulation setups are considered. Case 1: No 
genes are differentially expressed between the two classes. Case 2: Gene expression levels of class 0 patients follow 
normal distribution with mean 0; for class 1 patients, the 2% differentially expressed genes follow normal mixtures, 
half with mean 

1
  and half with mean

20.5µ = 1.5µ = . The “true” prediction error  is the misclassification rate 
when a prediction rule built on the sample is tested on 1000 independent data with the same structure.   

ne

   Case 1:  No differential genes    Case 2:  2% differential genes Classifier Prediction Error Estimation 
Method Est. STD Bias MSE Est. STD Bias MSE 

DLDA  “True” Error ( ) ne 0.500 0.016   0.184 0.067   
 Resubstitution 0.009 0.020 -0.491 0.242 0.006 0.017 -0.177 0.036 
 Ordinary Bootstrap 0.196 0.022 -0.304 0.093 0.130 0.036 -0.054 0.006 
 Bootstrap Cross Validation 0.205 0.024 -0.295 0.088 0.139 0.037 -0.045 0.006 
 .632 Bootstrap 0.344 0.039 -0.157 0.026 0.229 0.064  0.045 0.007 
 LOOCV 0.527 0.206  0.026 0.043 0.206 0.152  0.022 0.019 
 Out-Of-Bag Estimation 0.590 0.156  0.090 0.033 0.243 0.153  0.059 0.022 
 Leave-One-Out Bootstrap 0.538 0.059  0.038 0.005 0.359 0.098  0.175 0.038 
 .632+ Bootstrap 0.516 0.054  0.015 0.003 0.318 0.111  0.134 0.027 
 RLOOB:l=1 0.539 0.058  0.039 0.005 0.358 0.098  0.175 0.038 
 RLOOB:l=2 0.537 0.098  0.036 0.011 0.278 0.121  0.095 0.020 
 RLOOB:l=10 0.532 0.160  0.032 0.027 0.217 0.136  0.034 0.015 
 Adjusted Bootstrap 0.534 0.128  0.033 0.018 0.237 0.133  0.053 0.016 
1NN “True” Error ( ) ne 0.501 0.016   0.211 0.071   
 Resubstitution 0 0 -0.501 0.251 0 0 -0.211 0.050 
 Ordinary Bootstrap 0.194 0.021 -0.306 0.094 0.127 0.038 -0.085 0.010 
 Bootstrap Cross Validation 0.205 0.022 -0.296 0.088 0.136 0.040 -0.075 0.009 
 .632 Bootstrap 0.342 0.036 -0.159 0.027 0.223 0.067  0.012 0.004 
 LOOCV 0.529 0.184  0.029 0.035 0.241 0.166  0.030 0.020 
 Out-of-Bag Estimation 0.600 0.161  0.100 0.036 0.243 0.161  0.031 0.018 
 Leave-One-Out Bootstrap 0.541 0.058  0.040 0.005 0.354 0.106  0.142 0.027 
 .632+ Bootstrap 0.518 0.051  0.018 0.003 0.312 0.118  0.100 0.018 
 RLOOB:l=1 0.541 0.055  0.041 0.005 0.354 0.105  0.143 0.027 
 RLOOB:l=2 0.536 0.090  0.036 0.010 0.289 0.127  0.077 0.015 
 RLOOB:l=10 0.532 0.140  0.032 0.021 0.247 0.144  0.036 0.014 
 Adjusted Bootstrap 0.533 0.114  0.032 0.014 0.258 0.139  0.046 0.014 
CART “True” Error ( ) ne 0.500 0.016   0.290 0.089   
 Resubstitution 0 0 -0.500 0.250 0 0 -0.290 0.092 
 Ordinary Bootstrap 0.188 0.020 -0.312 0.098 0.129 0.041 -0.162 0.033 
 Bootstrap Cross Validation 0.197 0.022 -0.303 0.092 0.135 0.042 -0.156 0.031 
 .632 Bootstrap  0.331 0.034 -0.169 0.030 0.227 0.073 -0.064 0.013 
 LOOCV 0.528 0.225  0.029 0.516 0.326 0.194  0.035 0.038 
 Out-of-Bag Estimation 0.574 0.180  0.074 0.038 0.253 0.150 -0.038 0.022 
 Leave-One-Out Bootstrap 0.524 0.054  0.024 0.004 0.359 0.115  0.068 0.018 
 .632+ Bootstrap 0.505 0.056  0.005 0.003 0.320 0.126  0.030 0.016 
 RLOOB:l=1 0.523 0.053  0.023 0.004 0.358 0.114  0.067 0.018 
 RLOOB:l=2 0.521 0.099  0.021 0.010 0.350 0.136  0.060 0.023 
 RLOOB:l=10 0.520 0.173  0.020 0.030 0.331 0.170  0.041 0.032 
 Adjusted Bootstrap 0.520 0.135  0.020 0.019 0.343 0.155  0.053 0.028 
DLDA: diagonal linear discriminant analysis; 1NN: one nearest neighbor; CART: classification and regression tree. 
RLOOB: repeated leave-one-out bootstrap 
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Table 2. Simulation study with sample of size 40 and 800 genes. Two simulation setups are considered. Case 1: No 
genes are differentially expressed between the two classes. Case 2: Gene expression levels of class 0 patients follow 
normal distribution with mean 0; for class 1 patients, the 2% differentially expressed genes follow normal distribution 
with mean . The “true” prediction error  is the misclassification rate when a prediction rule built on the 
sample is tested on 1000 independent data with the same structure. 

1 .5µ = ne

 
   Case 1: No differential genes    Case 2: 2% differential genes Classifier Prediction Error Estimation 

Method Est. STD Bias MSE Est. STD Bias MSE 
DLDA  “True” Error ( ) ne 0.501 0.016   0.052 0.010   
 Resubstitution 0.066 0.035 -0.435 0.191 0.021 0.022 -0.031 0.0016 
 Ordinary Bootstrap 0.224 0.020 -0.277 0.077 0.040 0.020 -0.012 0.0007 
 Bootstrap Cross Validation 0.226 0.021 -0.274 0.076 0.042 0.021 -0.010 0.0007 
 .632 Bootstrap 0.351 0.034 -0.150 0.024 0.062 0.033  0.010 0.0013 
 LOOCV 0.513 0.160  0.012 0.026 0.053 0.038  0.001 0.0015 
 Out-Of-Bag Estimation 0.539 0.113  0.038 0.014 0.049 0.036 -0.003 0.0014 
 Leave-One-Out Bootstrap 0.517 0.043  0.016 0.002 0.087 0.043  0.035 0.0032 
 .632+ Bootstrap 0.502 0.043  0.001 0.002 0.065 0.035  0.013 0.0015 
 Adjusted Bootstrap 0.514 0.085  0.013 0.008 0.056 0.033  0.004 0.0012 
1NN “True” Error ( ) ne 0.501 0.016   0.079 0.020   
 Resubstitution 0 0 -0.501 0.251 0 0 -0.079 0.0066 
 Ordinary Bootstrap 0.188 0.013 -0.312 0.098 0.040 0.018 -0.038 0.0019 
 Bootstrap Cross Validation 0.193 0.014 -0.308 0.095 0.042 0.019 -0.037 0.0018 
 .632 Bootstrap 0.328 0.022 -0.173 0.031 0.070 0.032 -0.008 0.0009 
 LOOCV 0.520 0.132  0.019 0.018 0.079 0.055  0.000 0.0023 
 Out-of-Bag Estimation 0.550 0.110  0.049 0.015 0.058 0.042 -0.021 0.0019 
 Leave-One-Out Bootstrap 0.519 0.036  0.018 0.002 0.111 0.050  0.033 0.0031 
 .632+ Bootstrap 0.505 0.035  0.005 0.001 0.078 0.038 -0.000 0.0012 
 Adjusted Bootstrap 0.517 0.064  0.016 0.005 0.085 0.047  0.006 0.0017 
CART “True” Error ( ) ne 0.500 0.016   0.221 0.042   
 Resubstitution 0.028 0.019 -0.471 0.223 0.020 0.017 -0.201 0.042 
 Ordinary Bootstrap 0.188 0.011 -0.312 0.097 0.085 0.019 -0.136 0.020 
 Bootstrap Cross Validation 0.191 0.013 -0.309 0.096 0.085 0.019 -0.136 0.020 
 .632 Bootstrap 0.335 0.019 -0.165 0.028 0.153 0.035 -0.069 0.007 
 LOOCV 0.515 0.175  0.015 0.031 0.212 0.112 -0.010 0.012 
 Out-of-Bag Estimation 0.543 0.113  0.043 0.015 0.123 0.049 -0.099 0.013 
 Leave-One-Out Bootstrap 0.513 0.029  0.013 0.001 0.230 0.052  0.009 0.004 
 .632+ Bootstrap 0.503 0.029  0.003 0.001 0.180 0.047 -0.041 0.005 
 Adjusted Bootstrap 0.513 0.069  0.014 0.005 0.225 0.078  0.004 0.006 
DLDA: diagonal linear discriminant analysis; 1NN: one nearest neighbor; CART: classification and regression tree. 
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Table 3. Simulation study with sample of size 100 and 800 genes. Two simulation setups are considered. Case 1: No 
genes are differentially expressed between the two classes. Case 2: Gene expression levels of class 0 patients follow 
normal distribution with mean 0; for class 1 patients, the 2% differentially expressed genes follow normal distribution 
with mean . The “true” prediction error  is the misclassification rate when a prediction rule built on the 
sample is tested on 1000 independent data with the same structure.  

1 .5µ = ne

 
   Case 1: No differential genes    Case 2: 2% differential genes Classifier Prediction Error Estimation 

Method Est. STD Bias MSE Est. STD Bias MSE 
DLDA  “True” Error ( ) ne 0.500 0.016   0.049 0.008   
 Resubstitution 0.183 0.031 -0.317 0.102 0.031 0.018 -0.018 0.0007 
 Ordinary Bootstrap 0.291 0.015 -0.209 0.044 0.037 0.014 -0.012 0.0004 
 Bootstrap Cross Validation 0.292 0.016 -0.208 0.044 0.037 0.014 -0.012 0.0004 
 .632 Bootstrap 0.386 0.023 -0.114 0.014 0.043 0.016 -0.006 0.0003 
 LOOCV 0.498 0.110 -0.002 0.012 0.047 0.023 -0.001 0.0006 
 Out-Of-Bag Estimation 0.510 0.069  0.010 0.005 0.040 0.019 -0.009 0.0005 
 Leave-One-Out Bootstrap 0.504 0.026  0.004 0.001 0.050 0.017  0.001 0.0003 
 .632+ Bootstrap 0.496 0.028 -0.005 0.001 0.043 0.016 -0.006 0.0003 
 Adjusted Bootstrap 0.503 0.048  0.003 0.003 0.049 0.018  0.000 0.0004 
1NN “True” Error ( ) ne 0.500 0.015   0.076 0.015   
 Resubstitution 0 0 -0.500 0.251 0 0 -0.076 0.0059 
 Ordinary Bootstrap 0.185 0.007 -0.315 0.100 0.029 0.009 -0.047 0.0024 
 Bootstrap Cross Validation 0.187 0.008 -0.314 0.099 0.029 0.009 -0.047 0.0024 
 .632 Bootstrap 0.320 0.012 -0.181 0.033 0.049 0.015 -0.026 0.0009 
 LOOCV 0.504 0.081  0.003 0.007 0.076 0.034 -0.000 0.0009 
 Out-of-Bag Estimation 0.519 0.068  0.019 0.005 0.050 0.024 -0.026 0.0012 
 Leave-One-Out Bootstrap 0.506 0.019  0.005 0.001 0.078 0.024  0.002 0.0005 
 .632+ Bootstrap 0.499 0.020 -0.001 0.001 0.053 0.018 -0.023 0.0008 
 Adjusted Bootstrap 0.505 0.031  0.005 0.001 0.077 0.027 0.001 0.0006 
CART “True” Error ( ) ne 0.500 0.016   0.188 0.025   
 Resubstitution 0.062 0.021 -0.438 0.193 0.041 0.017 -0.146 0.022 
 Ordinary Bootstrap 0.220 0.006 -0.280 0.079 0.100 0.013 -0.088 0.009 
 Bootstrap Cross Validation 0.222 0.008 -0.278 0.078 0.101 0.013 -0.087 0.008 
 .632 Bootstrap 0.342 0.012 -0.157 0.025 0.151 0.021 -0.037 0.002 
 LOOCV 0.503 0.124  0.003 0.015 0.189 0.076  0.002 0.006 
 Out-of-Bag Estimation 0.524 0.066  0.024 0.005 0.100 0.028 -0.088 0.009 
 Leave-One-Out Bootstrap 0.506 0.015  0.006 0.001 0.214 0.029  0.026 0.002 
 .632+ Bootstrap 0.500 0.016  0.001 0.000 0.169 0.026 -0.019 0.002 
 Adjusted Bootstrap 0.506 0.033  0.006 0.001 0.200 0.039  0.012 0.002 
DLDA: diagonal linear discriminant analysis; 1NN: one nearest neighbor; CART: classification and regression tree. 
 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 22



Table 4. Lymphoma data using diagonal linear discriminant analysis (DLDA) classifier. The “true” prediction 
error n  is the misclassification rate when a prediction rule built on the sample is tested on those 240-n patients 
not selected in the sample.  

e

n=14 n=20 Prediction Error Estimation 
Method 

Est. STD Bias MSE Est. STD Bias MSE 
“True” Error ( ) ne 0.257 0.071   0.211 0.055   
Resubstitution 0.002 0.024 -0.256 0.070 0.010 0.023 -0.201 0.044 
Ordinary Bootstrap 0.184 0.057 -0.073 0.013 0.121 0.032 -0.090 0.012 
Bootstrap Cross-Validation 0.209 0.058 -0.049 0.010 0.130 0.033 -0.081 0.010 
.632 Bootstrap 0.267 0.054  0.010 0.008 0.210 0.055 -0.001 0.005 
LOOCV 0.306 0.184  0.048 0.039 0.234 0.135  0.023 0.019 
Out-of-Bag Estimation 0.358 0.156  0.100 0.039 0.243 0.119  0.032 0.016 
Leave-One-Out Bootstrap 0.422 0.084  0.164 0.039 0.327 0.084  0.116 0.022 
.632+ Bootstrap 0.390 0.100  0.132 0.032 0.279 0.092  0.069 0.015 
Adjusted Bootstrap 0.309 0.155  0.052 0.030 0.247 0.111  0.036 0.015 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 23



BIAS

-0.35
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
O

B
S

B
C

V

0.
63

2

LO
O

C
V

O
O

B

LO
O

B
S

0.
63

2+

A
B

S

Ca
se

  1
STD

0

0.05

0.1

0.15

0.2

0.25

O
B

S

B
C

V

0.
63

2

LO
O

C
V

O
O

B

LO
O

B
S

0.
63

2+

A
B

S

MSE

0

0.02

0.04

0.06

0.08

0.1

O
B

S

B
C

V

0.
63

2

LO
O

C
V

O
O

B

LO
O

B
S

0.
63

2+

A
B

S

BIAS

-0.1

-0.05

0

0.05

0.1

0.15

0.2

O
B

S

B
C

V

0.
63

2

LO
O

C
V

O
O

B

LO
O

B
S

0.
63

2+

A
B

S

C
as

e 
2

STD

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

O
B

S

B
C

V

0.
63

2

LO
O

C
V

O
O

B

LO
O

B
S

0.
63

2+

A
B

S

MSE

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

O
B

S

B
C

V

0.
63

2

LO
O

C
V

O
O

B

LO
O

B
S

0.
63

2+

A
B

S

Figure 1. Comparison of Prediction Error Estimation on Simulated Datasets with n=20, p=800. Case 1:  No 
differentially expressed genes; Case 2: Class 0 patients follow normal distribution with mean 0, for class 1 patients, 
the 2% differentially expressed genes follow normal mixtures, half with mean  0.5 and half with mean 1.5. Diagonal 
linear discriminant analysis is used in class prediction. The “true” prediction errors for the two cases are 0.500 and 
0.184. Methods displayed are ordinary bootstrap (OBS), bootstrap cross-validation (BCV), 632 bootstrap, leave-one-out 
cross-validation (LOOCV), out-of-bag estimation (OOB), leave-one-out bootstrap (LOOBS),.632+ bootstrap, and adjusted 
bootstrap (ABS). 
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Figure 2. Illustration of the Adjusted Bootstrap Method
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Figure 3. Comparison of Prediction Error Estimation on Simulated Datasets with n=40, p=800. Case 1:  No 
differentially expressed genes; Case 2: Class 0 patients follow normal distribution with mean 0, for class 1 
patients, the 2% differentially expressed genes follow normal with mean 1.5. Classification and regression tree is 
used in class prediction. The “true” prediction errors for the two cases are 0.500 and 0.221. Methods displayed are 
ordinary bootstrap (OBS), bootstrap cross-validation (BCV), 632 bootstrap, leave-one-out cross-validation (LOOCV), out-
of-bag estimation (OOB), leave-one-out bootstrap (LOOBS),.632+ bootstrap, and adjusted bootstrap (ABS). 


