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Calculating Confidence Intervals for Prediction Error in 
Microarray Classification Using Resampling 

 
Abstract 

 
Motivation: 

Cross-validation based point estimates of prediction accuracy are frequently reported in 

microarray class prediction problems. However these point estimates can be highly 

variable, particularly for small sample numbers, and it would be useful to provide 

confidence intervals of prediction accuracy.  

Results: 

We performed an extensive study of existing confidence interval methods and compared 

their performance in terms of empirical coverage and width. We developed a bootstrap 

case cross-validation (BCCV) resampling scheme and defined several confidence interval 

methods using BCCV with and without bias-correction.  

 

The widely used approach of basing confidence intervals on an independent binomial 

assumption of the leave-one-out cross-validation errors results in serious under-coverage 

of the true prediction error. Two split-sample based methods previously proposed in the 

literature tend to give overly conservative confidence intervals.  Using BCCV resampling, 

the percentile confidence interval method was also found to be overly conservative 

without bias-correction, while the bias corrected accelerated (BCa) interval method of 

Efron returns substantially anti-conservative confidence intervals. We propose a simple 

bias reduction on the BCCV percentile interval. The method provides mildly conservative 

inference under all circumstances studied and outperforms the other methods in 

microarray applications with small to moderate sample sizes.  

Availability: Matlab and R files are available on requests from the authors.  

Contact: WJ: jiangwen@mail.nih.gov   SV: varmas@mail.nih.gov  
RS: rsimon@mail.nih.gov 
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1 INTRODUCTION 
 
Microarray based gene expression profiling is widely used in oncology research to 

predict clinical outcome such as response to therapy and occurrence of metastasis.  

Microarray experiments are typically conducted with a small to moderate number (n) of 

cases but a large number (p) of genes; the number of genes is usually orders of magnitude 

larger than the number of specimens (n<<p). Introduction to microarray technology and 

discussion of relevant issues in statistics can be found in Simon, Korn et al. (2003). For 

each specimen in the sample, the data consist of the gene expression measurements 

generated from the microarray experiment along with a class label indicating the outcome 

category. Given the observed data, a prediction model (predictor) can be trained to 

predict the outcome for future observations. An accurate prediction model helps to 

improve the correct diagnosis and/or proper treatment assignment for patients. 

Performance of the class prediction procedures are usually assessed by prediction error 

rates.  

 

In such class prediction problems, it is common to report a point estimate for prediction 

error to assess how well a prediction model built on the observed sample generalizes to 

future data. If we have a large sample, we can split it into a training set (on which we 

develop the prediction model) and a test set on which we can evaluate the prediction 

model. The performance of the prediction model on the test set provides a point estimate 

for the true prediction error.  

 

Because of the limited number of cases in most microarray studies, the split-sample 

approaches represents an inefficient use of the data relative to leave-one-out cross-

validation (LOOCV) (Lachenbruch and Mickey, 1968) or other resampling methods 

(Molinaro, Simon and Pfeiffer, 2005). When the number of cases is small or moderate, 

both split-sample and cross-validation based estimates of prediction error are imprecise 

and confidence intervals should be reported. 
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With the split-sample method, the number of prediction errors in the test set has a 

Binomial distribution and a confidence interval for the prediction error can be based on 

that distribution. For LOOCV, however, the test set on which prediction of the ith case 

has n-2 specimens in common with the training set on which prediction of the jth is based, 

hence, the number of prediction errors is not binomial (Radmacher, McShane and Simon, 

2002). Nevertheless, such Binomial distribution based confidence intervals are often used 

in the literature (Martin and Hirschberg, 1996). 

 

Michiels, Koscielny and Hill (2005) applied a multiple random validation strategy to 

construct confidence intervals for prediction error. This method randomly splits the 

sample into learning and test sets of pre-specified sizes a large number of times. For each 

random split, it calculates a split-sample estimate of prediction error. Confidence 

intervals are obtained from the empirical percentiles of these estimates obtained from the 

random splits. In their paper, the method was applied directly to a number of microarray 

datasets. However, the validity and performance of this method were neither established 

nor investigated in their paper.   

 

Limited work has been done in the literature to evaluate the merits of the fore-mentioned 

confidence interval procedures for microarray data. Through extensive empirical study, 

we find these existing methods are problematic in the microarray situation. 

 

In this paper we propose a new method for estimating confidence intervals. We first 

develop a bootstrap case cross-validation procedure (BCCV) which is a modification of 

the resampling procedure of Fu, Carroll and Wang (2005). Their resampling procedure 

was originally proposed for the purpose of obtaining point estimates for prediction error 

in small sample problems. However, their method seriously underestimates the true 

prediction error because of the overlaps between the learning and test sets in boostrap 

samples (Jiang and Simon, 2006).  In our proposed BCCV resampling procedure, the 

resampled learning and test sets do not overlap.  We construct bootstrap percentile 

confidence intervals (Efron and Tibshirani, 1998) based on BCCV, but find the method 

tends to give overly-conservative results. We further employ the bias-corrected 
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accelerated (BCa) method (Efron, 1987) on the BCCV resampling, but it tends to produce 

confidence intervals with serious under-coverage in microarray situations.  We then 

propose a simple bias reduction approach to correct on the direct percentile confidence 

intervals using BCCV. 

 

2 METHODS 

2.1 Review of Confidence Interval Methods for Prediction Error 

In this section, we first describe the general framework for microarray class prediction 

and then review some existing confidence interval estimation methods for prediction 

error. 

 

In a microarray experiment with n independent specimens, we observe ( , )i i ix t y= , 

, where  is a -dimensional vector containing gene expression measurements 

and  is the response for subject i .  Suppose the observations 

1,...,i = n it p

iy 1,..., nx x are realizations of 

an underlying random variable ( , )X T Y=  and the dichotomous response Y takes 0 or 1 

values distinguishing the two classes of outcome. We are interested in the true prediction 

error ( { }( , )n E I Y r T xθ = ≠⎡⎣ ⎤⎦ ) as a prediction accuracy measurement, where {}I  is an 

indicator function. The true prediction error is the probability that the prediction model 

r( · , · ) built on the observed data ( )1,..., nx x x=  misclassifies a future item arising from 

the random mechanism of X .  

 

Since the number of genes (features) greatly exceeds the number of specimen, it is 

necessary to select a collection of genes to include in prediction modeling. This step is 

known as feature selection and is an important part of the algorithm of building 

prediction model r( · , · ).  When point or interval estimation of the prediction error is 

based on resampling approaches, feature selection needs to be performed on every 

learning set arising from cross-validation or other type of resampling of the data. Failure 

to conduct feature selections within the loops of the resampling procedures results in 

serious overestimation on prediction accuracy (Simon, Radmacher et al. 2003; Ambroise 

and McLachlan, 2002).  
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Binomial Interval Based on Leave-One-Out Cross-Validation (LOOCV-Bin) 

Leave-one-out cross-validation (LOOCV) is a popular method for estimating prediction 

error for small samples. The LOOCV estimate can be expressed as 

{ }( )1
1/ ( , )nLOOCV

n i i ii
n I y r t xθ −=

= ≠∑ , where ( )ix −  represents the leave-one-out learning 

set, which is the collection of data with observation ix  removed . It calculates the rate of 

misclassification when predicting for each specimen using a learning set containing all 

other observations in the sample. The distribution of the LOOCV estimate is typically 

unknown; hence it is not easy to measure the variability of the estimate or to construct the 

corresponding confidence intervals.  

 

For specimen , a LOOCV test error (i { }( )( , )i i iI y r t x −≠ ) takes 0 or 1 value, indicating 

whether the prediction model built on ( )ix − misclassifies the response of the specimen. 

Inference for the true prediction error nθ  is often based upon an assumption that the 

LOOCV errors are independent Bernoulli trials with mean nθ , and their sum ( LOOCV
nnθ ) 

follows a binomial distribution denoted by Bin(n, nθ ). The corresponding 

100(1 )%α− binomial confidence interval is given by 

{ : Pr( | )}
LOOCV

n n x ,θ θ αΒ ≤ <  

which consists of all plausible values of nθ such that the probability of observing a 

binomial variableΒ (from Bin(n, nθ )) no greater than the actual number of LOOCV 

errors is smaller thanα . 

 

Although the method is commonly used in the conventional framework when n>p, it is 

known that the assumption is invalid; in fact, the LOOCV errors are shown to have 

positive covariance (Lemma 1, Nadeau and Bengio, 2001). We will assess the 

performance of this confidence interval method in microarray application with n<<p.  

 

Binomial Interval Based on Split-Sample (Split-Bin) 
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Split-sample method divides the sample  into a learning set x learnx of size and a test 

set

learnn
testx of size  such that testn learn testn n n+ = ; a prediction model  is built on the 

learning set; the split sample estimate for prediction error is the average error rate 

of applying the prediction model on the test set. For specimen in the test set,  a test error 

(

( , )learnr x⋅

Split
nθ

i

{ }( , )learn
i iI y r t x≠ ) takes 0 or 1 value, indicating whether the prediction model 

misclassifies the response of the specimen.  

 

Unlike the LOOCV error mentioned in the previous method, the test errors for the split 

sample method are truly independent Bernoulli variables. A Binomial confidence interval 

for nθ  can be derived by using the Bernoulli distribution on the test errors. This approach 

provides exact inference for the true prediction error of the split-sample learning set learnx . 

It should work well for nθ  on a sample large enough so that building a prediction model 

on the split-sample learning set is almost as accurate as on the sample itself, and the test 

set is also large enough.  

 

We study this method in microarray applications where the sample sizes are typically not 

large, and we investigate the performance of this method under different learning-and-

test-set allocations (i.e. versus ). learnn testn

 

Multiple Random Validation Percentile Interval (MRVP) 

Michiels, Koscielny and Hill (2005) proposed a multiple random validation strategy for 

confidence interval estimation for the true prediction error. With pre-specified sizes of 

learning and test sets, the method randomly split the samples into learning and test sets 

and obtains a split-sample estimate of the true prediction error; this procedure is repeated 

a large number of times to obtain replicates of such estimates. The 100(1 )%α−  

percentile of these estimates is used as the 100(1 )%α−  upper confidence limit.   

 

In the original paper, the authors applied the method directly to a number of datasets with 

a variety of learning-and-test set allocations; the number of patients in the learning sets 
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ranges from ten to a maximum value, which can give rise to test sets with as few as one 

patient from each class. In our opinion, the learning-and-test-set allocation should be 

assessed with caution. On one hand, when the learning set size  is much smaller than 

the sample size n, the split sample estimates will seriously overestimate the true 

prediction error (Molinaro et al. 2005). We will evaluate how this affects the performance 

of the confidence intervals. On the other hand, when the test set size  becomes too 

small, the split-sample estimates will be too discrete to produce meaningful inference. 

For example, with two patients in each test set, the MRVP intervals will only take three 

values, 0, 0.5 and 1. 

learnn

testn

 

2.2 Confidence Intervals using Bootstrap Case Cross-Validation  

Our new confidence interval methods will be based on the following bootstrap case 

cross-validation (BCCV) procedure. From the original sample x, we draw a bootstrap 

sample of size n using simple random sampling with replacement. This is repeated B 

times and we denote the bootstrap samples by *, *,
1 ,...,b

n
bx x where 1,...b B= . Define a vector 

 whose entry is the number of times that the original observation 1( ,..., )b
nm mb b

im ix is 

selected in bootstrap sample b. We then apply a cross-validation procedure on a bootstrap 

sample. That is, we leave out all the replications of an original observation (case) at a 

time and use what remains in the bootstrap sample to predict for the left-out observation. 

The resulting cross-validation estimate can be formulated as  

*, *,
( )

1

1 { ( ,
nb b b

i i i i
i

m I y r t x
n

θ −
=

= ≠∑ )} 

where *,
( )

b
ix −  is the bootstrap sample b excluding the replications of the original 

observation i. In this way, the BCCV resampling avoids overlaps between the learning set 

and the test set generated in the cross validation procedure.  

 

Bootstrap Case Cross-Validation Percentile Interval (BCCVP) 

The BCCV resampling gives rise to an estimate 
*,1BCCV b

B
θ θ= for the true prediction 

error.  We can construct percentile confidence intervals utilizing the empirical 
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distribution of the cross-validation estimates calculated on the bootstrap replications; an 

approximate100(1 )%α−  level upper confidence interval for the true prediction error can 

be obtained as  where 
*
(1 )(0, ]αθ −

*
(1 )αθ −  is the100(1 )α−  empirical percentile of 

*,b
θ , 

. This procedure is in the general framework of bootstrap percentile interval 

approach (Efron and Tibshirani, 1998).  

1,...b = B

 

Bias Corrected Accelerated Interval Using Bootstrap Case Cross-Validation   

(BCCV-BCa) 

The BCCV procedure is a modification on the bootstrap cross-validation of Fu, Carroll 

and Wang (2005). The BCCV procedure avoids overlaps between the resampled learning 

and test sets and can be used for interval estimation. However, a simple probability 

calculation indicates that the resampled learning set *,
( )

b
ix −  in the BCCV contains only 

about .632(n-1) unique observations (Efron, 1983). This leads to an overestimation on the 

true prediction error and can result in overly conservative inference. 

 

Efron (1987) proposed a bias corrected accelerated (BCa) method which is known to 

improve on percentile intervals for a population parameter in traditional n>p framework. 

We apply the BCa algorithm as described in Efron and Tibshirani (1998) as an initial 

approach to correct on the BCCVP intervals and the details of the algorithm are presented 

in the supplementary materials. The BCa method assumes the existence of a 

transformation such that the parameter of interest and its estimate are transformed into a 

statistic having an asymptotically normal distribution. However, this assumption may not 

be valid in prediction error estimation problems. In Section 3.1, we evaluate how the BCa 

method corrects on the BCCVP intervals. 

 

Bootstrap Case Cross-Validation Percentile Interval with Bias Reduction (BCCVP-

BR) 

We propose a simpler approach to correct the BCCVP confidence intervals through bias 

reduction. That is, we approximate the100(1 )%α−  level upper confidence interval 

by
*
(1 )(0, ( )]

BCCV LOOCV
αθ θ θ− − − , where 

*
(1 )αθ −  is the upper confidence limit using the 
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BCCVP method. The term 
BCCV LOOCV

θ θ−  corresponds to the amount that the BCCV 

estimate exceeds the LOOCV estimate
LOOCV

θ . It approximates the bias of the BCCV 

estimate since the LOOCV procedure is known to give an almost unbiased estimate for 

the true prediction error.  

 

3 RESULTS 

In this section, we compare the performance of the existing confidence interval methods 

and the BCCV based methods through extensive simulations and an application to a 

lymphoma dataset.  

 

Though all these methods are capable of estimating two-sided confidence intervals, we 

focus on upper confidence intervals. An upper confidence interval for the true prediction 

error is of the form [ where ]u,0 1≤u  is the value below which the true prediction error is 

expected to lie with probability ( )α−1 . In microarray class prediction context, an upper 

confidence interval for true prediction error is of primary interest since it helps to assess 

whether a prediction model predicts the classes better than chance. 

3.1 Simulation Study 

We compare the methods described in Section 2 through simulations. Synthetic data are 

generated with half of the patients in class 0, half in class 1. Gene expression levels for 

each patient are generated from a normal distribution with covariance 

matrix ( ), , 1,...,ij i j pσΣ = = , where the nonzero entries are 1iiσ =  and 

0.2ijσ = with . For class 0 patients, gene expression levels are generated with 

mean 0. For class 1 patients, we generate a fixed proportion of the genes with mean

0 | | 5i j< − ≤

µ  

and the rest with mean 0. 

 

 In each simulation run, we generate a sample of n patients, each with p genes. We 

compute upper confidence limits in each simulation run for a number of nominal 

coverage levels using the aforementioned confidence interval procedures.  In each 

simulation run, we also generate 1000 independent data from the same random 

mechanism as above, use it as a test set to calculate the prediction error rate of the sample 
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and call it the “true” prediction error nθ . A simulation study contains R=1000 simulation 

runs. We compute the average and the standard deviation of the upper confidence limits 

across all simulation runs, as well as the empirical coverage probability, which is the 

proportion of the simulation runs with upper confidence limits greater than the 

corresponding “true” prediction errors nθ . 

 

We conduct eight simulation studies by varying the sample size, the number of genes, the 

proportion of differentially expressed genes and the classifier. Simulation 1 is composed 

of n=40 patients in each sample with p=1000 genes, 2% of the genes in class 1 have non-

zero means 0.8µ = . Simulation 2 considers the “null” case where there is no difference 

between the two classes.  Simulation 3 considers a smaller sample size of n=20 but 

otherwise has the same composition as Simulation 1. Simulation 4 considers the n>p 

situation with n=40 and p=10, half of the genes in class 1 are differentially expressed 

with mean 0.8µ = ; all genes are used in prediction and no feature selection is done. In 

the n<<p situations, 10 features with the largest absolute-value t-statistics are selected for 

every prediction model, and the feature selection steps are repeated on all split-sample or 

resampled learning sets generated throughout the procedures to compute confidence 

intervals. In Simulations 1-4, we use the diagonal linear discriminant analysis (DLDA) as 

the classifier to discriminate the classes and the algorithm is available through the 

function “dlda” in the library “supclust” in the statistical package R (Ihaka and 

Gentleman, 1996). For simplicity of presentation, we only include outcome of 

Simulations 1-4 in the paper and descriptions for Simulations 1-4 are listed in Table 1. 

Descriptions and results for Simulations 5-8 are presented in the supplementary material. 

Insert Table 1 about here. 

 

Table 2 presents the 80% and 90% upper confidence intervals using the BCCVP, 

BCCVP-BR, BCCV-BCa, LOOCV-Bin, Split-Bin (1/3) with 1/3 patients in the test set, 

and MRVP (1/3) . The MRVP (1/3) method randomly splits the sample 100 times; each 

split results in a test set of 1/3 and a learning set of 2/3 of the patients in the sample. In 

addition to the empirical coverage probability, we report the average and standard 

deviation of the upper confidence limits calculated across all simulation replications. We 
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also include for each simulation in Table 1 the “true” prediction errors nθ  averaged 

across all simulation runs. Comparisons of the coverage properties of these methods are 

illustrated in Figure 1. We plot the empirical coverage probabilities of the upper 

confidence intervals against the nominal coverage levels of 70%, 80%, 90% and 95%. 

The yellow reference line indicates perfect agreements between the empirical and the 

nominal coverage.  

 

The BCCVP-BR intervals are slightly conservative and are more accurate than the 

BCCVP intervals in terms of coverage in all simulations. The LOOCV-Bin and the 

BCCV-BCa methods work well in Simulation 4 in the traditional n>p scenario, but they 

both suffer from substantial under-coverage in Simulations 1-3 with n<<p, hence are not 

suitable for data typical of microarray applications. The BCCV-BCa method is less 

competitive than other methods also because it gives confidence limits with the largest 

standard deviation. The Split-Bin (1/3) and the MRVP (1/3) both give conservative 

confidence intervals. The MRVP (1/3) has more serious over-coverage than the BCCVP-

BR, although the two methods perform about the same at 95% level in Simulations 1 and 

3. In Simulations 1 and 2, the Split-Bin (1/3) is comparable to the BCCVP-BR at nominal 

levels of 90% and 95% in terms of coverage but is more conservative than the BCCVP-

BR at levels below 90%. The BCCVP-BR intervals are more accurate than the Split-Bin 

(1/3) intervals in terms of coverage in Simulation 3 with smaller sample size and in 

Simulation 4 with n>p.  Overall, the BCCVP-BR intervals perform the best among the 

methods across all simulation studies and all nominal coverage levels of practical interest. 

Insert Table 2 and Figure 1 about here. 

 

The Split-Bin (1/3) and the MRVP (1/3) have good performance at the extreme nominal 

coverage levels. We further examine how these methods behave with different learning-

and-test-set allocations. In Figure 2, we compare the coverage properties of the BCCVP-

BR intervals to the Split-Bin and MRVP methods with 2/3, 1/3 and 1/10 observations in 

the test sets respectively. Among the Split-Bin intervals, the Split-Bin (2/3) gives more 

serious over-coverage than the Split-Bin (1/3) in Simulations 1, 3 and 4 because a 

reduction on the learning set size leads to overestimation of the true prediction error. In 
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Simulation 2, varying the learning set size does not have such an obvious impact since 

there are no differences between the two classes. The Split-Bin (1/10) is based on very 

small test sets and is the least stable in all simulations. The Split-Bin (1/3) method clearly 

works better than Split-Bin (2/3) and Split-Bin (1/10).The MRVP (2/3) methods give 

more conservative intervals than MRVP (1/3) and MRVP (1/10).  

Insert Figure 2 about here. 

 

To provide further insight into the comparison of the methods, we consider another 

performance measure, how often a method provides upper confidence limits below 0.5. 

An upper confidence limit exceeding 0.5 is not very useful, because in such a situation 

we cannot reject the null hypothesis that the prediction is no better than chance. Consider, 

for example, a method for upper confidence limits that gives 1 with probability 0.95 and 

0 with probability 0.05. This gives an exact 95% coverage of the true prediction error but 

the confidence limits themselves are not useful at all. 

 

In Figure 3, we plot the proportion of simulation runs giving upper confidence intervals 

smaller than 0.5 against the nominal coverage levels for the three Split-Bin methods and 

the three MRVP methods. The MRVP (1/3) method outperforms MRVP (2/3) and MRVP 

(1/10) according to this performance measure. In Simulations 1, 3, and 4 where the genes 

of the two classes are expressed differently, the MRVP (1/10) and Split-Bin (1/10) both 

perform poorly, while the BCCVP-BR always performs the best. In Simulation 1, for 

instance, the 90% intervals using MRVP (1/10)  falls below 0.5 less than 10% of the 

times, while the 90% BCCVP-BR intervals are smaller than 0.5 around 50% of the times; 

although the MRVP (1/10) gives slightly better coverage than the BCCVP-BR in this 

example. In other words, compared to BCCVP-BR method, the number of times we reach 

conclusive inference is much smaller when using MRVP (1/10) or Split-Bin (1/10) 

intervals. In the “null” situation, an upper confidence interval below 0.5 leads to a false 

positive conclusion on the prediction model.  Since we focus this investigation on the 

conservative approaches, the panel of Simulation 2 in Figure 3 confirms that the false 

positive rates are controlled below α  for all 100(1 )%α− upper intervals.   

Insert Figure 3 about here. 
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3.2. Application to Lymphoma Data 
 
Rosenwald et al. (2002) performed a microarray study using tumors for patients with 

large-B-cell lymphoma. The study measured 7399 genes on a total of N=240 patients and 

developed a classifier to distinguish the germinal-center B-cell like subgroup from the 

other subgroups. We define the germinal-center B-cell-like as class 1, the other 

subgroups as class 0 accordingly. In the following analysis, we draw a random sample of 

size n, equally divided between class 0 and class 1; the upper confidence limits are 

computed as described in Section 2. To evaluate coverage, we calculate the “true” 

prediction error nθ using the N-n patients not selected in the sample as an independent 

test set. The number of bootstrap repetitions is 100 in the BCCVP, BCCVP-BR, BCCV-

BCa methods, the number of random splits is 100 in the MRVP method, 10 features with 

the largest absolute value t-statistics are repeatedly selected throughout and the results are 

reported in Table 3.  

 

The analysis illustrates that the BCCVP-BR method gives reasonable confidence 

intervals for the lymphoma data with small to moderate sample sizes. It is worth noting 

that the LOOCV-Bin interval does not cover the “true” prediction error nθ  at either 80% 

or 90% nominal level in the analysis with n=40. The BCCV-BCa interval barely covers 

nθ  at 80% level when n=20 and the Split-Bin method with 1/3 sample in the test set 

gives rise to upper confidence limits greater than 0.5 when n=20.  Performance of the 

confidence interval methods, however, cannot be judged on a one-time application on a 

real data example, but it is not possible to evaluate coverage probabilities for most 

datasets because the total number of specimens is typically much smaller and the true 

prediction error, nθ , is not available. Even on a large dataset such as the lymphoma data, 

repeated random sampling on the complete dataset does produce replicates of confidence 

intervals; but such random samples are correlated and it is rather uncertain how to 

analyze the properties of these confidence intervals. Consequently, comparison of the 

confidence interval procedures has to be based on extensive simulation studies as in the 

previous subsection. 

Insert Table 3 about here. 
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4. Discussion 

Inference for the prediction error is more challenging in the n<<p scenarios than in the 

traditional context with n>p. The prediction error should ideally be assessed on an 

independent large test set, but this is often impossible because of the relatively small 

number of specimens in microarray studies. For this reason, inference for prediction error 

in this context often has to rely on partitioning or resampling the observed data to form 

learning and test sets. When the number of features exceeds the number of specimens, 

feature selection is a crucial part of the prediction model and has to be performed prior to 

the class prediction step on every learning set arising from the data partitioning or 

resampling. 

 

Because of the large amount of noise and high dimensionality characterizing microarray 

data, conservative inference is preferable in order to avoid false positive claims on 

prediction models. When n>p, the LOOCV-Bin method is a common choice for inference; 

the BCa method is well-known to correct on the bootstrap percentile intervals. But both 

methods give anti-conservative confidence intervals when n<<p in the study in this paper. 

Both methods are built on strong distributional assumptions that are either invalid or hard 

to verify.  

 

In a microarray study featuring small to moderate sample sizes, the chances of reaching 

conclusive inference for the prediction is very low for the 95% or more extreme level 

confidence intervals. Confidence levels of 80% to 90% are more reasonable choices in 

the presence of high dimensionality and sparseness of the data.  

 

Additional simulation studies are presented in the supplement, in which we compare the 

confidence interval procedures in situations with a larger sample size (n=100), a larger 

number of genes (p=3000), a different signal level separating the classes and a different 

classifier. With a larger sample size or a stronger signal, we see an increase in the 

percentages of reaching conclusive confidence intervals (upper confidence limit < 0.5). In 

most of the simulations, we use the simple DLDA classifier since its performance is 

better than more sophisticated classifiers (Dudoit, Fridlyand and Speed, 2002). In one of 
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simulations (included in the supplementary materials), we replace the DLDA classifier by 

the supported vector machines (SVM) classifier (Vapnik, 1998) but it does not change the 

overall comparison of the confidence interval procedures. 

 

The MRVP and Split-Bin methods both give overly conservative confidence intervals 

when the learning set size is small, and they are less likely to produce practically 

meaningful intervals when the test set size is small. This is not surprising since both 

methods make use of split-sample approach, which is known to work well only for 

problems with large sample sizes (Molinaro et al, 2005). With small to moderate sample 

sizes, a good allocation of the sample in these methods is to assign roughly one third of 

the observations in the test sets and two thirds in the learning sets.  

learnn
testn

 

In the Split-Bin and LOOCV-Bin methods, we construct direct binomial confidence 

intervals on account of the true or the assumed test error distribution. It is also possible to 

employ normal approximation to binomial distribution and compute instead the normal 

confidence intervals. But with a small number of Bernoulli trials, it is often necessary to 

carry out continuity corrections on these normal approximations; although it is difficult to 

specify a correction which is suitable in any application context. A variety of continuity 

corrections in this effort has been discussed by Martin and Hirschberg (1996). 

 

The bootstrap cross-validation (BCV) resampling of Fu et al., 2005 initiates a bootstrap 

approach on cross-validation procedure for point estimation on the true prediction error. 

However, this method is prone to give highly anti-conservative inference on the true 

prediction error due to the overlaps between the resampled learning and test sets. In the 

supplementary materials, we explore confidence interval methods based on the original 

BCV resampling, but the methods lead to substantial under-coverage. The BCCV 

resampling is developed on the BCV technique; it amends the flaws of the BCV method 

and extends its use to confidence interval estimation. The BCCVP-BR method is free of 

distributional assumptions; it gives slightly conservative confidence intervals for the true 

prediction error, thus effectively avoids overly optimistic claims on the prediction; it 

performs better than other methods considered in this paper in situations with small to 
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moderate sample sizes and large numbers of features characterizing microarray 

applications. One drawback of the BCCVP-BR method is that the confidence intervals 

are not strictly confined in the interval between 0 and 1, although this only occurs 

sporadically at the extreme confidence levels. In an attempt to circumvent this problem, 

we fit a beta density on the BCCV estimates
*,b

θ , 1,...b B= , and shift the mean of the beta 

distribution to the LOOCV estimates; the quantiles of the resulting distribution are used 

as the confidence intervals. Preliminary study suggests this approach provides slight 

improvements on the BCCVP-BR intervals at the extreme confidence levels. 
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Table 1. Description of Simulations 1 to 4. Diagonal linear discriminant analysis (DLDA) 
is used in class prediction algorithm. Number of simulation replications is 1000. The 
quantity nθ  is the “true” prediction error for each sample evaluated on 1000 independent 
test data. Average of nθ is calculated across all simulation replications.       

Simulation n p % differential genes Average of nθ  
1 40 1000 2% .264 
2 40 1000 0% .500 
3 20 1000 2% .384 
4 40 10  50% .274 

 
 
Table 2. Upper Confidence Intervals for Simulations 1-4. Methods include bootstrap case cross-validation 
percentile interval (BCCVP), BCCVP with bias reduction (BCCVP-BR), bias corrected accelerated interval 
using BCCV (BCCV-BCa) , binomial interval based on leave-one-out cross-validation (LOOCV-Bin), 
binomial interval based on split-sample (Split-Bin) and multiple random validation percentile (MRVP). 
Number of bootstrap repetitions is 100 in BCCVP, BCCVP-BR, BCCV-BCa and number of random splits 
is 100 in MRVP. 
                                                     Simulation 1 Simulation 2 Simulation 3 Simulation 4 

Nominal levels  80% 90% 80% 90% 80% 90% 80% 90% 
BCCVP         
      Coverage Probability 1 1 .998 1 1 1 .895 .964 
      Average Confidence Limit .533 .619 .679 .758 .689 .782 .369 .415 
      SD of Confidence Limit .088 .089 .051 .049 .076 .072 .078 .085 
BCCVP-BR         
      Coverage Probability .928 .992 .841 .939 .883 .969 .802 .933 
      Average Confidence Limit .425 .511 .671 .749 .629 .722 .346 .392 
      SD of Confidence Limit .142 .143 .162 .159 .207 .202 .082 .087 
BCCV-BCa         
      Coverage Probability .628 .752 .725 .815 .719 .819 .815 .911 
      Average Confidence Limit .353 .423 .643 .704 .585 .661 .362 .408 
      SD of Confidence Limit .213 .219 .238 .219 .297 .278 .100 .105 
LOOCV-Bin         
      Coverage Probability .731 .832 .705 .758 .782 .854 .858 .932 
      Average Confidence Limit .346 .378 .585 .617 .530 .574 .351 .384 
      SD of Confidence Limit .132 .134 .156 .153 .196 .191 .075 .076 
Split-Bin (1/3 in test set)         
      Coverage Probability .951 .985 .878 .934 .933 .980 .901 .950 
      Average Confidence Limit .481 .536 .637 .688 .659 .728 .435 .491 
      SD of Confidence Limit .139 .137 .123 .117 .177 .160 .124 .124 
MRVP (1/3 in test set)         
      Coverage Probability .976 .994 .937 .992 .949 .986 .889 .953 
      Average Confidence Limit .433 .485 .600 .651 .573 .654 .365 .410 
      SD of Confidence Limit .092 .094 .057 .056 .112 .113 .079 .082 
SD: Standard Deviation 
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Table 3. Upper Confidence Limits for Lymphoma Data. Methods include the bootstrap case cross-
validation percentile interval (BCCVP), BCCVP with bias reduction (BCCVP-BR), bias corrected 
accelerated interval using BCCV (BCCV-BCa) , binomial interval based on leave-one-out cross-validation 
(LOOCV-Bin), binomial interval based on split-sample (Split-Bin) and multiple random validation 
percentile (MRVP).  
                        n=20 n=40 n=100 

Nominal levels  80% 90% 80% 90% 80% 90% 
BCCVP .400 .450 .275 .375 .230 .270 
BCCVP-BR .235 .285 .194 .294 .203 .243 
BCCV-BCa .150 .250 .225 .275 .200 .230 
LOOCV-Bin .202 .245 .162 .190 .199 .217 
Split-Bin (1/3 in test set) .585 .667 .199 .251 .410 .447 
MRVP (1/3 in test set) .333 .333 .214 .214 .235 .265 
The “true” prediction errors for n=20, 40 and 100 are .150, .195 and .107, evaluated on test sets of the 
remaining 240-n patients respectively. 
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Figure Legends 

 

Figure 1. Comparison of confidence interval procedures. Empirical coverage probabilities 

are plotted against nominal confidence levels of 70%, 80%, 90% and 95% for the 

bootstrap case cross-validation percentile interval (BCCVP), BCCVP with bias reduction 

(BCCVP-BR), bias corrected accelerated interval using BCCV (BCCV-BCa) , binomial 

interval based on leave-one-out cross-validation (LOOCV-Bin), binomial interval based 

on split-sample (Split-Bin) with 1/3 sample in the test set and multiple random validation 

percentile interval (MRVP) with 1/3 sample in the test set. The yellow line is the line 

for reference. 

45

 

Figure 2. Comparison of coverage properties for the binomial intervals based on split-

sample (Split-Bin) and the multiple random validation percentile intervals (MRVP) with 

2/3, 1/3 and 1/10 samples in the test sets. Empirical coverage probabilities are plotted 

against nominal confidence levels of 70%, 80%, 90% and 95%. Also displayed are results 

using the bootstrap case cross-validation percentile interval with bias reduction (BCCVP-

BR) and the 45 yellow line for reference. 

 

Figure 3. Comparison of chances to reach conclusive confidence intervals using the 

binomial intervals based on split-sample (Split-Bin) and the multiple random validation 

percentile intervals (MRVP) with 2/3, 1/3 and 1/10 samples in the test sets. Proportions 

of simulated upper confidence intervals falling below 0.5 are plotted against nominal 

confidence levels of 70%, 80%, 90% and 95%. Also displayed are results using the 

bootstrap case cross-validation percentile interval with bias reduction (BCCVP-BR). 
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