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Abstract: 

Experimental design issues for dual-label and single-label microarray experiments are 

discussed, including identification of research objectives, avoidance of confounding, 

allotment of samples to arrays and dyes in dual-label experiments, dye bias, pooling RNA 

before labeling, and determination of the number of arrays required to achieve the study 

objectives.  
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Introduction 

Experimental design issues for dual-label and single-label microarray experiments are 

discussed, including identification of research objectives, avoidance of confounding, 

allotment of samples to arrays and dyes in dual-label experiments, dye bias, pooling RNA 

before labeling, and determination of the number of arrays required to achieve the study 

objectives.  

 

 

1. Objectives 

 

The first step in designing a microarray experiment is to identify the goals of the 

experiment.  There is no one design that will be appropriate for every experiment, but the 

optimal design for a particular experiment will depend on the research questions being 

addressed.  As the size and scope of microarray studies grow, so do the range of 

questions that researchers are asking.  It is not possible to be comprehensive here in 

discussing study objectives, but it is useful to identify a few general types of objectives 

often seen in microarray research. 

 

Class comparison objectives apply to studies of collections of specimens which come 

from two or more pre-defined classes, types or conditions.  The defining aspect is that the 

classes are known ahead-of-time, independent of the gene expression data, and that the 

research question is: which genes are expressed differently in the different classes?  For 

example, Hedenfalk et al. (2001) compared primary tumors from two classes of women, 
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those who carried the BRCA1 mutation genotype and those who carried the BRCA2 

mutation genotype.  One goal of the study was a class comparison goal, namely, to 

discover a set of genes that were expressed differently in the two genotypes.  Other 

examples of studies with class comparison objectives include: 1) Golub et al. (1999) 

identified genes expressed differentially between specimens of acute myelogenous 

leukemia and specimens of acute lymphocytic leukemia; 2) Ross et al. (2000) compared 

expression profiles of cancer cell lines from different tissues of origin.  In these studies, 

class comparison was often not the only goal, but there were other goals as well, such as 

class prediction. 

 

Class prediction objectives can apply either to studies of collections of specimens from 

pre-defined classes, or to studies in which some clinical outcome is measured for each 

individual from which a specimen was obtained.  The defining aspect is that the research 

question is: can we construct a prediction rule for the specimens that will predict, from 

the gene expression data alone, the likely class or outcome for this individual?  The 

ultimate goal is usually to develop a rule that can be used on future individuals for whom 

the classification or outcome data is not available.  The Golub et al. (1999) paper also 

provides an example of a class prediction objective; the differentially expressed genes 

discovered in the class comparison phase were used to develop a multi-gene class 

predictor that distinguished between acute myelogeous leukemia and acute lymphocytic 

leukemia, and the predictor was applied to an independent set of tumors to assess the 

predictive performance.  Rosenwald et al. (2002) developed a molecular predictor of 
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survival after chemotherapy based on biopsy samples from diffuse large-B-cell 

lymphoma patients.   

 

Class discovery objectives can apply either to studies in which there are no pre-defined 

classes for the specimens, or in which the current classification system is deemed 

inadequate.  The defining aspect is that the research question is: can we discover a new 

classification system for these specimens based solely on gene expression data?  Bittner 

et al. (2000) applied cluster analysis techniques to the gene expression profiles of a 

collection of melanoma samples to identify a novel classification system for this 

otherwise homogeneous group of specimens, suggesting a gene expression based 

taxonomy.   

 

Another type of class discovery study addresses the research question: can we use what 

we know about the function of some genes to figure out the function of other genes?  Or, 

what genes are co-regulated in these samples?  These questions are typically approached 

by applying cluster analysis to the genes instead of the samples. 

 

 

 

 

2. Confounding 
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In an ideal microarray experiment, tissue handling and cutting, RNA extraction, reverse-

transcription and labeling, and array hybridization would all be performed at about the 

same time, under identical experimental conditions.  For such an experiment in a class 

comparison setting, observed significant differences between the classes in gene 

expression could safely be attributed to real biological differences in the classes.  But it is 

common that this type of ideal experiment is not possible, that not all microarrays used 

will be analyzed at the same time, that the microarray chips used may not all be uniform, 

that reagents may vary over the course of the experiment, etc.   

 

If the microarray assay conditions vary, then it is still possible to construct a well 

designed experiment by ensuring that the assay conditions are not confounded with the 

goals of the experiment.  For instance, suppose one has two classes of specimens one 

wishes to compare, that there are 10 specimens from each class, and that there are also 10 

microarrays from each of two different chip versions that are to be used.  An experiment 

that assigns the samples from one class to one chip version and the samples from the 

other class to the other chip version would be poorly designed because one would not 

know whether to attribute observed differences to chip versions or to the classes.  Chip 

version and classes would be completely confounded, that is, their effects would be 

inextricably mixed together.  A well designed experiment in this situation would be one 

in which each class is assigned five chips from each version.  Then observed differences 

between the classes could not be attributed to the chip version, and one could separate out 

the effects of the different chip versions from the biological differences between the 

classes. 
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3. Dual-label microarray experiment designs 

 

Dual-label systems present design issues not encountered by single-label systems.  Each 

array in a dual-label system has two channels, one corresponding to each dye label.  The 

motivation for using two labels instead of one is that it allows one to eliminate spot-to-

spot variation – due to quality, size and location of spots – from comparisons of interest.  

The result is much greater power in class comparison experiments and greater ability to 

identify true clusters in class discovery than if a single dye was used.  The resulting data 

structure, with large variation between measurements from different spots and small 

variation between the two measurements on the same spot, is called a block structure by 

statisticians, with the spots on the microarray serving as the blocking factor whose 

variability is blocked out of the comparisons of interest.  

 

We will focus here on two types of designs for dual-label experiments, reference designs 

and balanced block designs, because for most experiments where the goal is class 

comparison, class prediction, and/or class discovery, one of these two designs will be 

optimal.  Variations on these designs, such as dye swaps and technical replicates, will be 

discussed below.  Other designs have been proposed, such as all-pairs designs (Yang and 

Speed, 2002), and loop designs (Kerr and Churchill, 2001).   
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The reference design 

 

Reference design dual-label microarray experiments utilize multiple aliquots from a 

single RNA source, called the reference, which are applied to each microarray and are 

usually all labeled with the same dye.  The role of the reference is sometimes not clearly 

understood.  The size and location of a spot on a microarray is a major source of 

variability in these types of experiments.  The role of the reference is to provide an 

estimate of this “spot” effect for every spot on every array.  Consider the situation for a 

single gene.  In all of the reference aliquots, this gene has the same expression level; 

therefore, differences in the expression level for this gene on different arrays can be 

attributed to the combination of spot size, quality, and location effects that together make 

up the spot-to-spot variation.  Hence, for this gene, the spot-to-spot variation is well 

represented by the variation in the expression of the reference sample over the spots 

(assuming the gene is expressed at a sufficiently high level in the reference sample).  This 

allows one to correct for this source of variability when comparing the samples in the 

non-reference channels.  Without the reference, it would not be possible to correct for this 

source of variation, and the noise would effectively drown out much of the effects of 

interest for which one is looking.   

 

The reference sample does not have to have a biologically meaningful interpretation, but 

it should be selected so that in general the genes expressed in the non-reference samples 

are also expressed in the reference sample.  In order to get a good correction for the spot-

to-spot variation, one needs some gene expression in the reference sample for that gene, 
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otherwise there will be a universally low gene expression in the reference channel 

regardless of differences in the size, quality and location of the spots, and the reference 

channel will not reflect the “spot” effects well.  Therefore, genes with low or no 

expression in the reference channel will provide relatively noisy comparisons between 

the non-reference samples.   

 

The balanced block design 

The reference design may appear ideal because of the simple and intuitive way in which 

it allows one to estimate the spot-to-spot variation and eliminate it from comparisons of 

interest.  But, in fact, spot-to-spot variation can also be estimated and eliminated from 

other types of designs.  Although the estimates in these other types of designs may not be 

as intuitive as in the reference design, they are equally valid and can in fact result in 

considerable improvement in efficiency for class comparison experiments.  The most 

efficient designs for class comparisons are balanced block designs.  Other types of 

designs that have been proposed in the literature are not as efficient (Dobbin and Simon, 

2002). 

 

A balanced block design does not use a reference sample.  Instead, a single aliquot from 

each biological sample (e.g., from each person or each mouse) is taken, and the samples 

are arranged so that samples from any two classes are paired together the same number of 

times over the microarrays.  In the case of just two classes, this means that a sample from 

each class is paired together on each array.  As discussed in the dye bias section below, 
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half the samples from each class should be tagged with Cy3 dye, and the other half with 

Cy5 dye. 

 

Examples of a reference design and a balanced block design are given in Tables 1 and 2. 

 

When to use a reference design and when to use a balanced block design 

 

The reference design is the most commonly used design in dual-label microarray 

experiments.  There are several advantages to the reference design that make it 

particularly appealing to scientists who may not have access to a trained biostatistician or 

bioinformatician to consult with on the design or analysis of their experiment: 1)  Some 

microarray data analysis software packages assume that a reference design was used, and 

analyzing data from a different type of design with these packages may not be 

straightforward; 2) Reference designs do not require that the investigator stipulate ahead-

of-time what particular comparisons are going to be of primary interest, and hence allows 

for greater flexibility than designs (such as the balanced block design) which do require 

the classes to be identified ahead of time and which may also lock the investigator into 

one particular type of comparison to the exclusion of other possible comparisons (for 

instance, one may be locked into a comparison of different tumor grades when the real 

interesting comparison turns out to be different tumor stages – but it may not even be 

possible to make this comparison after a balanced block experiment is run with grade as 

the comparison of interest); 3) If samples are analyzed at different times, then there may 
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be no easy way to adjust for these differences unless one has the reference sample to 

serve as a baseline for the comparisons.   

 

If class discovery is a goal of the experiment, and the samples are to be analyzed using 

cluster analysis, then the reference design has been shown to be superior to other designs 

that have been proposed (Dobbin and Simon, 2002).  The reason for this is that effective 

cluster analysis depends on having good estimates of the distance between every pair of 

samples.  In a reference design, the distance between any two samples is measured with 

the same efficiency because that distance only involves measurement error related to two 

arrays, corresponding to the arrays for each of the samples; this is because the repeated 

reference sample on each array can be used to “connect” any two arrays.  Other designs 

have less direct “connections” between the samples that involve more arrays and hence 

more measurement error.  Because some of the distances in these alternative designs will 

be measured quite inefficiently and so will be very poorly estimated, a cluster analysis 

algorithm will have a hard time picking up the structure in the data, as we have shown in 

simulations (Dobbin and Simon, 2002).  Importantly, a design which does not have any 

samples with multiple aliquots from that sample repeated on multiple arrays, such as the 

balanced block design, will have very poor class discovery performance because the 

spots, i.e., the sources of greatest noise in these experiments, are confounded with the 

individual sample effects, completely obscuring the true distances between samples on 

different arrays. 
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Things are less straightforward if class comparison is the major goal of the experiment.  

In this case, the best design depends on what the limiting factor is in the experiment.  

Arrays are the limiting factor of the experiment if one has plenty of samples (or could 

produce plenty of samples), but due to expense or other logistics one can only run a fixed 

number of arrays.  On the other hand, samples are the limiting factor if one only has 

access to a fixed number of samples, and array expense or logistics is a relatively minor 

concern – one just wants to measure these samples as well as possible.   

 

For a class comparison experiment in which arrays are the limiting factor, a balanced 

block design can be significantly more efficient than a reference design.    This means 

that the resulting list of differentially expressed genes will potentially have far fewer 

“false positives” – genes that are not truly differentially expressed – and will be missing 

far fewer “false negatives” – genes that truly are differentially expressed but which don’t 

show up on the gene list because the difference is drowned out by experimental error 

variation.  Table 3 shows the relative efficiencies for a balanced block compared to a 

reference design.  For two classes, the relative efficiency is 2.4, indicating that it would 

require more than twice as many arrays with a reference design to achieve the same 

efficiency as a balanced block design. 

 

For a class comparison experiment in which the samples are the limiting factor, the 

efficiency differences between a balanced block and reference design are much less 

dramatic (see Table 3, second row).  This is partly because the reference design uses 

twice as many arrays, and hence it will be more expensive and labor-intensive than the 
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balanced block design.  With three or more classes, the reference design is more efficient 

and seems preferable overall.  With two classes, the reference design is slightly less 

efficient, but this may not offset some of the advantages described in the first paragraph 

of this subsection. 

 

 

 

4. Dye bias and the use of dye swap designs 

Several definitions of dye bias have been used in the literature:  1) The tendency of one 

dye to appear brighter overall across genes (although this should be removed by proper 

normalization); 2) The tendency of spots with different overall intensities to display 

different relative efficiencies of the two dyes (which can be adjusted for using intensity 

dependent normalization such as lowess); 3) Bias for a particular subset of genes caused 

by an interaction between the sequence of a gene and the dye being incorporated.  This 

creates dye bias for certain genes, but the dye bias for a gene is the same in all the 

samples;  4) Bias caused by an interaction between genes and the dyes that is different for 

different samples.  We will restrict attention to definition 3), and we refer to this type of 

dye bias as gene-specific dye bias to distinguish it from 1) and 2).  Bias of type 4), which 

could be called gene-and-sample-specific dye bias, could not be removed statistically 

from the comparisons of the different samples, so we will not discuss this type of dye 

bias here.  Several authors have investigated gene-specific dye bias and found that it does 

seem to exist, but generally tends to be small in quantity (Dobbin et al., 2003a; Tseng et 

al., 2001). 
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For class comparison experiments, gene-specific dye bias will not affect comparisons 

between classes of samples labeled with the same dye.  Hence gene-specific dye bias will 

not affect the identification of differentially expressed genes in single-label experiments 

or in dual-label reference design experiments (for comparison of classes of non-reference 

samples).  Gene-specific dye bias may affect cluster analyses in class discovery 

experiments in either single-label or dual-label platforms with a correlation metric 

because intensity differences between genes may be influenced by sequence dependence 

of dye incorporation efficiency.     

 

For class comparison experiments using a balanced block design, gene-specific dye bias 

can be eliminated from the class comparisons in dual-label systems by labeling half (or 

nearly half, if odd number) of the samples from every class with each dye, and adding a 

dye bias term to the model.  There is no need to dye swap individual arrays (i.e., run the 

same two samples with the labeling reversed) to eliminate the dye bias.  In fact, dye 

swapping individual arrays will result in a loss of efficiency compared to running new 

arrays with different samples (Dobbin et al., 2003a).   

 

Finally, if, in a dual-label system, comparisons between the reference sample and the 

non-reference samples are of interest, then dye bias adjustment can best be made by 

running dye swaps on some, but not all, arrays (Dobbin et al., 2003a).  
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5. Pooling samples 

In some situations, there is not enough RNA available from individual specimens to run 

the microarray assay.  This problem can be overcome either by RNA amplification, or by 

pooling different RNA samples together until there is enough RNA for an array.  Pooling 

samples in this way can be a viable alternative to RNA amplification.  In order to perform 

statistical inference in a class comparison setting, it is necessary to construct several 

independent pools from each class or condition.  Two pools are independent if there is no 

overlap in the sources from which the pools are constructed, e.g., if RNA from three mice 

is used to form each pool, then no two pools have a mouse in common.   

 

Sometimes the motivation for pooling is not that there is inadequate RNA from 

individual samples to run the microarrays, but that by pooling it is hoped that the cost of 

the experiment will be reduced because fewer microarrays are required.  For instance, an 

experiment with 12 samples from each of two classes would require 24 single-label 

microarrays; by pooling pairs of RNA samples together, one can reduce the number of 

arrays required to 12, 6 for each class.  The pooled samples will also show less variation 

because, by pooling samples, the biological variation is reduced.  But the improvement in 

power usually associated with such a reduction in variance is offset somewhat because 

power is also related to degrees of freedom for error, and the degrees of freedom are 

reduced from 22 in the 24 array experiment to 10 in the 12 array experiment.  In fact, in 

order to get the same power as in the 24 array experiment, one will need to use more 

samples in the pooled experiment.  This results in a tradeoff between the cost of the 

microarrays and the cost of sample acquisition which is displayed in Table 4.  In general, 
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unless the samples are very available and inexpensive relative to the microarrays, pooling 

does not appear to be an effective way to reduce cost (Dobbin and Simon, 2003; 

McShane et al., 2003).   

 

 

6. Sample size 

Here we will focus on sample size determination for class comparison experiments.  

Sample size for prognostic studies was treated in Simon et al. (2002), and sample size 

calculations for class discovery or class prediction remain open research questions.   

 

In class comparison problems, it is common to cycle through, gene by gene, to determine 

which genes are differentially expressed (although in small studies gene variance 

estimates may borrow information across genes (Wright and Simon, 2003)).  Although 

multivariate permutation tests can be more effective (Simon et al., 2004), it is reasonable 

to power the study based on multiple univariate analyses.  Assuming decisions about 

differential expression for individual genes are based on t-test statistics, a sample size 

formula for a two-class class comparison experiment is  
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satisfying the equation, which is found iteratively.  This formula can be used either for a 

reference design dual-label experiment or a single-label experiment.  n  is the total 

number of arrays required, with  for each class.   is the variance of the base 2 log-
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ratios for the dual-label reference design, or the variance of the base 2 log-intensities for 

the single-label experiment.   and  are the 2/,2 α−nt β,2−nt 2/α th percentile and the β th 

percentile of the t distribution with 2−n  degrees of freedom, respectively.  α   is the 

significance level of the test, and β−1  is the power to detect a difference of size δ  in 

the class means on the base 2 log scale.  Selection of an appropriate variance  is 

somewhat problematic because different genes are usually assumed to have different 

error variances, but reasonable estimates can be derived using prior data from a similar 

experiment (Yang and Speed, 2002).   

2σ

 

For , the sample size formula can be based on the simpler standard normal 

approximation 

60≥n
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+
=  where  and  are the 2/αz βz 2/α th and β th 

percentiles of the standard normal distribution, respectively. 

 

Sample size formulas for balanced block designs, and for experiments with technical 

replicates, have been presented elsewhere (Dobbin and Simon, in press). 
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Tables and captions 

 

Array 1 2 3 4 5 6 7 8 9 10 

Cy3 R R R R R R R R R R 

Cy5 A B C D E A B C D E 

Table 1: Reference design example.  R is the reference sample.  A, B, C, D, E are the five 

different classes being compared.  There are two different samples from each variety. 

 

Array 1 2 3 4 5 6 7 8 9 10 

Cy3 A C A E B D B C E D 

Cy5 B A D A C B E D C E 

Table 2: Balanced block design example.  A, B, C, D, E are the five different classes 

being compared.  There are four different samples from each variety. 
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Number of Varieties  

Relative Efficiencies 2 3 

Same number of 
arrays used 

2.4 1.8  
Limiting Factor 
 Same non-reference 

samples used 
1.2 0.9 

Table 3:  Relative efficiencies of balanced block and reference designs.  Variance ratio 

set to 4.  Efficiency of block design divided by efficiency of reference design, so that a 

relative efficiency over 1 indicates block design more efficient.   

 

 

Number of 
samples pooled 
on each array 

Number of arrays 
required 

Number of 
samples required 

1 25 25 

2 17 34 

3 14 42 

4 13 52 

Table 4: Number of arrays and samples required for various pooling levels.  An 

independent pool is constructed for each array, so that no sample is represented 

on more than one array.  Settings were same as Table 1: 001.=α , 05.=β , 

1=δ , and .   is the biological variance within a class, and  

is the measurement error variance.  Variance ratio is . 

25.2 22 =+ gg στ 2
gτ

2
gσ

4/ 22 =gg στ

 


